मराठी

Find the Equation of the Hyperbola Whose Foci Are (4, 2) and (8, 2) and Eccentricity is 2. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola whose  foci are (4, 2) and (8, 2) and eccentricity is 2.

थोडक्यात उत्तर

उत्तर

The centre of the hyperbola is the midpoint of the line joining the two focii.
So, the coordinates of the centre are \[\left( \frac{4 + 8}{2}, \frac{2 + 2}{2} \right), i . e . \left( 6, 2 \right)\]

Let 2a and 2b be the length of the transverse and conjugate axis. Let e be the eccentricity.

\[\Rightarrow \frac{\left( x - 6 \right)^2}{a^2} - \frac{\left( y - 2 \right)^2}{b^2} = 1\]

Distance between the two focii = 2ae

\[2ae = \sqrt{\left( 4 - 8 \right)^2 + \left( 2 - 2 \right)^2}\]

\[ \Rightarrow 2ae = 4\]

\[ \Rightarrow ae = 2\]

\[ \Rightarrow a = 1\]

Also,\[ b^2 = \left( ae \right)^2 - \left( a \right)^2 \]

\[ \Rightarrow b^2 = 4 - 1\]

\[ \Rightarrow b^2 = 3\]

Equation of the hyperbola:

\[\frac{\left( x - 6 \right)^2}{1} - \frac{\left( y - 2 \right)^2}{3} = 1\]

\[ \Rightarrow \frac{\left( x^2 - 12x + 36 \right)}{1} - \frac{\left( y^2 - 4y + 4 \right)}{3} = 1\]

\[ \Rightarrow 3\left( x^2 - 12x + 36 \right) - \left( y^2 - 4y + 4 \right) = 3\]

\[ \Rightarrow 3 x^2 - 36x + 108 - y^2 + 4y - 4 = 3\]

\[ \Rightarrow 3 x^2 - y^2 - 36x + 4y + 101 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Hyperbola - Exercise 27.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 27 Hyperbola
Exercise 27.1 | Q 7.3 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±3), foci (0, ±5)


Find the equation of the hyperbola satisfying the given conditions:

Foci (0, ±13), the conjugate axis is of length 24.


Find the equation of the hyperbola satisfying the given conditions:

Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.


Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].


Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

9x2 − 16y2 = 144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 3x2 − y2 = 4 


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

2x2 − 3y2 = 5.


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the conjugate axis is 7 and passes through the point (3, −2).


Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).


Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] . 


Find the equation of the hyperbola whose vertices are at (± 6, 0) and one of the directrices is x = 4.


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


Find the equation of the hyperboala whose focus is at (4, 2), centre at (6, 2) and e = 2.


Find the equation of the hyperbola satisfying the given condition :

 foci (0, ± 13), conjugate axis = 24


find the equation of the hyperbola satisfying the given condition:

 vertices (± 7, 0), \[e = \frac{4}{3}\]


Find the equation of the hyperbola satisfying the given condition:

 foci (0, ± \[\sqrt{10}\], passing through (2, 3).


Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.


Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).


The difference of the focal distances of any point on the hyperbola is equal to


The foci of the hyperbola 9x2 − 16y2 = 144 are


The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is


The foci of the hyperbola 2x2 − 3y2 = 5 are


Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.


The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.


If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.


The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.


The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×