Advertisements
Advertisements
प्रश्न
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
The given equations are
`sqrt(3)x - y - 4sqrt(3)k` = 0 ......(i)
`sqrt(3)kx + ky - 4sqrt(3)` = 0 ......(ii)
From equation (i) we get
`4sqrt(3)k = sqrt(3)x - y`
∴ `k = (sqrt(3)x - y)/(4sqrt(3))`
Putting the value of k in equation (ii), we get
`sqrt(3)[(sqrt(3)x - y)/(4sqrt(3))]x + [(sqrt(3)x - y)/(4sqrt(3))]y - 4sqrt(3)` = 0
⇒ `((sqrt(3)x - y)/4)x + ((sqrt(3)x - y)/(4sqrt(3)))y - 4sqrt(3)` = 0
⇒ `((3x - sqrt(3)y)x + (sqrt(3)x - y)y - 48)/(4sqrt(3))` = 0
⇒ `3x^2 - sqrt(3)xy + sqrt(3)xy - y^2 - 48` = 0
⇒ `3x^2 - y^2` = 48
⇒ `x^2/16 - y^2/48` = 1 which is a hyperbola.
Here a2 = 16, b2 = 48
We know that b2 = a2(e2 – 1)
⇒ 48 = 16(e2 – 1)
⇒ 3 = e2 – 1
⇒ e2 = 4
⇒ e = 2
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±3), foci (0, ±5)
Find the equation of the hyperbola satisfying the given conditions:
Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.
The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.
Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].
Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 5 and the distance between foci = 13 .
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2.
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 5), foci (0, ± 8)
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 3), foci (0, ± 5)
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
Find the equation of the hyperbola satisfying the given condition:
foci (0, ± \[\sqrt{10}\], passing through (2, 3).
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is
If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)
Find the equation of the hyperbola with vertices (0, ± 7), e = `4/3`
The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.