मराठी

Find the Equation of the Hyperbola Satisfying the Given Condition : Vertices (0, ± 5), Foci (0, ± 8) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the hyperbola satisfying the given condition :

 vertices (0, ± 5), foci (0, ± 8)

थोडक्यात उत्तर

उत्तर

The vertices of the hyperbola are \[\left( 0, \pm 5 \right)\] and the foci are  \[\left( 0, \pm 8 \right)\] Thus, the value of \[a = 5\] and \[ae = 8\]

Now, using the relation 

\[b^2 = a^2 ( e^2 - 1)\], we get:

\[\Rightarrow b^2 = 64 - 25\]

\[ \Rightarrow b^2 = 39\]

Thus, the equation of the hyperbola is  \[- \frac{x^2}{39} + \frac{y^2}{25} = 1\].

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Hyperbola - Exercise 27.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 27 Hyperbola
Exercise 27.1 | Q 11.02 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±3), foci (0, ±5)


Find the equation of the hyperbola satisfying the given conditions:

Foci (±5, 0), the transverse axis is of length 8.


Find the equation of the hyperbola satisfying the given conditions:

Foci (0, ±13), the conjugate axis is of length 24.


Find the equation of the hyperbola satisfying the given conditions:

Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.


Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].


Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

16x2 − 9y2 = −144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 4x2 − 3y2 = 36


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 3x2 − y2 = 4 


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

2x2 − 3y2 = 5.


Find the equation of the hyperbola whose  foci are (4, 2) and (8, 2) and eccentricity is 2.


Find the equation of the hyperbola whose vertices are at (± 6, 0) and one of the directrices is x = 4.


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


find the equation of the hyperbola satisfying the given condition:

 vertices (± 7, 0), \[e = \frac{4}{3}\]


Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.


Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.


Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is


The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is


The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is


The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.


Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.


Find the equation of the hyperbola with vertices (0, ± 7), e = `4/3`


Find the equation of the hyperbola with foci `(0, +- sqrt(10))`, passing through (2, 3)


The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.


The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×