Advertisements
Advertisements
प्रश्न
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
3x2 − y2 = 4
उत्तर
Equation of the hyperbola: 3x2 − y2 = 4
This can be rewritten in the following way:
\[\frac{3 x^2}{4} - \frac{y^2}{4} = 1\]
\[ \Rightarrow \frac{x^2}{\frac{4}{3}} - \frac{y^2}{4} = 1\]
This is the standard equation of a hyperbola, where
\[\Rightarrow b^2 = a^2 ( e^2 - 1)\]
\[ \Rightarrow 4 = \frac{4}{3}( e^2 - 1)\]
\[ \Rightarrow e^2 - 1 = 3\]
\[ \Rightarrow e^2 = 4\]
\[ \Rightarrow e = 2\]
Coordinates of the foci are given by \[\left( \pm ae, 0 \right)\], i.e.
\[\left( \pm \frac{4\sqrt{3}}{3}, 0 \right)\] .
Equation of the directrices:
\[x = \pm \frac{a}{e}\]
\[x = \pm \frac{\sqrt{\frac{4}{3}}}{2}\]
\[ \Rightarrow \sqrt{3}x \pm 1 = 0\]
Length of the latus rectum of the hyperbola = \[\frac{2 b^2}{a}\] \[\Rightarrow \frac{2 \times 4}{\sqrt{\frac{4}{3}}} = 4\sqrt{3}\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Foci (0, ±13), the conjugate axis is of length 24.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(0, +- sqrt10)`, passing through (2, 3)
Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (1, 1) directrix is 2x + y = 1 and eccentricity = \[\sqrt{3}\].
Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the conjugate axis is 7 and passes through the point (3, −2).
Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).
Find the equation of the hyperbola whose foci are (4, 2) and (8, 2) and eccentricity is 2.
Find the equation of the hyperbola whose vertices are at (± 6, 0) and one of the directrices is x = 4.
Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2.
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.
Find the equation of the hyperbola satisfying the given condition :
vertices (0, ± 3), foci (0, ± 5)
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
Find the equation of the hyperbola satisfying the given condition:
foci (0, ± \[\sqrt{10}\], passing through (2, 3).
Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is
The foci of the hyperbola 9x2 − 16y2 = 144 are
The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is
Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.
If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.
Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.