Advertisements
Advertisements
प्रश्न
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is ______.
उत्तर
The eccentricity of the hyperbola `x^2/a^2 - y^2/b^2` = 1 which passes through the points (3, 0) and `(3 sqrt(2), 2)` is e2 = `13/9`.
Explanation:
Given that the hyperbola `x^2/a^2 - y^2/b^2` = 1 is passing through the points (3, 0) and `(3 sqrt(2), 2)`
So we get a2 = 9 and b2 = 4
Again, we know that b2 = a2(e2 – 1).
This gives 4 = 9(e2 – 1)
or e2 = `13/9`
or e = `sqrt(13)/3`.
APPEARS IN
संबंधित प्रश्न
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±5), foci (0, ±8)
Find the equation of the hyperbola satisfying the given conditions:
Vertices (0, ±3), foci (0, ±5)
Find the equation of the hyperbola satisfying the given conditions:
Foci (±5, 0), the transverse axis is of length 8.
Find the equation of the hyperbola satisfying the given conditions:
Foci (0, ±13), the conjugate axis is of length 24.
Find the equation of the hyperbola satisfying the given conditions:
Foci `(0, +- sqrt10)`, passing through (2, 3)
The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.
Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .
Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
3x2 − y2 = 4
Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .
2x2 − 3y2 = 5.
Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].
Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] .
Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2.
Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).
Find the equation of the hyperbola satisfying the given condition :
foci (0, ± 13), conjugate axis = 24
Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.
Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).
Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is
The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is
The foci of the hyperbola 2x2 − 3y2 = 5 are
The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.
Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).
Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.
The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.
The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.