मराठी

Find the equation of the circle which touches the both axes in first quadrant and whose radius is a. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle which touches the both axes in first quadrant and whose radius is a.

बेरीज

उत्तर

Clearly centre of the circle = (a, a) and radius = a

Equation of circle with radius r and centre (h, k) is (x – h)2 + (y – k)2 = r2


So, the equation of the required circle

⇒ (x – a)2 + (y – a)2 = a2

⇒ x2 – 2ax + a2 + y2 – 2ay + a2 = a2

⇒ x2 + y2 – 2ax – 2ay + a2 = 0

Hence, the required equation is x2 + y2 – 2ax – 2ay + a2 = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Exercise [पृष्ठ २०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 11 Conic Sections
Exercise | Q 1 | पृष्ठ २०२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×