मराठी

Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y – 4x + 3 = 0. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the circle which passes through the points (2, 3) and (4, 5) and the centre lies on the straight line y – 4x + 3 = 0.

बेरीज

उत्तर

Let the equation of the circle be

(x – h)2 + (y – k)2 = r2   ......(i)

If the circle passes through (2, 3) and (4, 5) then

(2 – h)2 + (3 – k)2 = r2  ......(ii)

And (4 – h)2 + (5 – k)2 = r2   ......(iii)

Subtracting equation (iii) from equation (ii) we have

(2 – h)2 – (4 – h)2 + (3 – k)2 – (5 – k)2 = 0

⇒ 4 + h2 – 4h – 16 – h2 + 8h + 9 + k2 – 6k – 25 – k2 + 10k = 0

⇒ 4h + 4k – 28 = 0

⇒ h + k = 7   ......(iv)

Since, the centre (h, k) lies on the line y – 4x + 3 = 0

Then k – 4h + 3 = 0

⇒ k = 4h – 3

Putting the value of k in equation (iv) we get

h + 4h – 3 = 7

⇒ 5h = 10

⇒ h = 2

From (iv) we get k = 5

Putting the value of h and k in equation (ii) we have

(2 – 2)2 + (3 – 5)2 = r2

⇒ r2 = 4

So, the equation of the circle is (x – 2)2 + (y – 5)2 = 4

⇒ x2 + 4 – 4x + y2 + 25 – 10y = 4

⇒ x2 + y2 – 4x – 10y + 25 = 0

Hence, the required equation is x2 + y2 – 4x – 10y + 25 = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Exercise [पृष्ठ २०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 11 Conic Sections
Exercise | Q 24 | पृष्ठ २०३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×