Advertisements
Advertisements
प्रश्न
Find the equation of a circle whose centre is (3, –1) and which cuts off a chord of length 6 units on the line 2x – 5y + 18 = 0.
बेरीज
उत्तर
Given that: Centre of the circle = (3, – 1)
Length of chord AB = 6 units
CP = `|(2 xx 3 - 5 xx - 1 + 18)/sqrt((2)^2 + (-5)^2)|`
= `|(6 + 5 + 18)/sqrt(29)|`
= `sqrt(29)`
Now AB = 6 units.
∴ AP = `1/2 "AB" = 1/2 xx 6` = 3 units
In ΔCPA, AC2 = CP2 + AP2
= `(sqrt(29))^2 + (3)^2`
= 29 + 9
= 38
∴ AC = `sqrt(38)`
So, the radius of the circle, r = `sqrt(38)`
∴ Equation of the circle is (x – 3)2 + (y + 1)2 = `(sqrt(38))^2`
⇒ (x – 3)2 + (y + 1)2 = 38
⇒ x2 + 9 – 6x + y2 + 1 + 2y = 38
⇒ x2 + y2 – 6x + 2y = 28
Hence, the required equation is x2 + y2 – 6x + 2y = 28.
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?