English

Find the Equation of the Hyperbola Whose Focus is (1, 1), Directrix is 3x + 4y + 8 = 0 and Eccentricity = 2 . - Mathematics

Advertisements
Advertisements

Question

Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .

Answer in Brief

Solution

Let be the focus and  \[P\left( x, y \right)\] be any point on the hyperbola.
Draw PM perpendicular to the directrix.
By definition:
SP = ePM

\[\Rightarrow\] \[\sqrt{(x - 1 )^2 + (y - 1 )^2} = 2\left( \frac{3x + 4y + 8}{5} \right)\]

Squaring both the sides:

\[(x - 1 )^2 + (y - 1 )^2 = 4 \left( \frac{3x + 4y + 8}{5} \right)^2 \]

\[ \Rightarrow x^2 + 1 - 2x + y^2 + 1 - 2y = \frac{4}{25}\left( 9 x^2 + 16 y^2 + 64 + 24xy + 64y + 48x \right)\]

\[ \Rightarrow 25 x^2 + 25 - 50x + 25 y^2 + 25 - 50y = 36 x^2 + 64 y^2 + 256 + 96xy + 256y + 192x\]

\[ \Rightarrow 11 x^2 + 39 y^2 + 96xy + 306y + 242x + 206 = 0\]

∴ Equation of the hyperbola = \[11 x^2 + 39 y^2 + 96xy + 306y + 242x + 206 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Hyperbola - Exercise 27.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 27 Hyperbola
Exercise 27.1 | Q 2.2 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±5), foci (0, ±8)


Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±3), foci (0, ±5)


Find the equation of the hyperbola satisfying the given conditions:

Foci (±5, 0), the transverse axis is of length 8.


The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.


Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].


Find the equation of the hyperbola whose focus is (2, 2), directrix is x + y = 9 and eccentricity = 2.


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 4x2 − 3y2 = 36


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the  conjugate axis is 5 and the distance between foci = 13 .


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the conjugate axis is 7 and passes through the point (3, −2).


Find the equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity is 2.


Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).


Find the equation of the hyperbola whose  foci are (4, 2) and (8, 2) and eccentricity is 2.


Find the equation of the hyperbola whose vertices are at (0 ± 7) and foci at \[\left( 0, \pm \frac{28}{3} \right)\] . 


Find the equation of the hyperbola whose foci at (± 2, 0) and eccentricity is 3/2. 


If P is any point on the hyperbola whose axis are equal, prove that SP. S'P = CP2.


Find the equation of the hyperbola satisfying the given condition :

vertices (0, ± 3), foci (0, ± 5)


Find the equation of the hyperbola satisfying the given condition :

 foci (0, ± 13), conjugate axis = 24


find the equation of the hyperbola satisfying the given condition:

 vertices (± 7, 0), \[e = \frac{4}{3}\]


Find the equation of the hyperbola satisfying the given condition:

 foci (0, ± \[\sqrt{10}\], passing through (2, 3).


Write the distance between the directrices of the hyperbola x = 8 sec θ, y = 8 tan θ.


Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is


The difference of the focal distances of any point on the hyperbola is equal to


The foci of the hyperbola 9x2 − 16y2 = 144 are


The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is


Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.


Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.


The length of the transverse axis along x-axis with centre at origin of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is ______.


If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.


Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.


Find the equation of the hyperbola with eccentricity `3/2` and foci at (± 2, 0).


The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half of the distance between the foci is ______.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×