English

Find the Equation of the Hyperbola, Referred to Its Principal Axes as Axes of Coordinates, In the Conjugate Axis is 7 and Passes Through the Point (3, −2). - Mathematics

Advertisements
Advertisements

Question

Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the conjugate axis is 7 and passes through the point (3, −2).

Answer in Brief

Solution

 Length of the conjugate axis, \[2b = 7\]

\[\Rightarrow b = \frac{7}{2}\]

Let the equation of the hyperbola be \[\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\].

It passes through  \[\left( 3, - 2 \right)\] .

\[\therefore \frac{3^2}{a^2} - \frac{( - 2 )^2}{\left( \frac{7}{2} \right)^2} = 1\]

\[ \Rightarrow \frac{3^2}{a^2} - \frac{16}{49} = 1\]

\[ \Rightarrow \frac{9}{a^2} = \frac{16}{49} + 1\]

\[ \Rightarrow \frac{9}{a^2} = \frac{65}{49}\]

\[ \Rightarrow a^2 = \frac{441}{65}\]

Therefore, the standard form of the hyperbola is \[\frac{65 x^2}{441} - \frac{4 y^2}{49} = 1\].
or \[ 65 x^2 - 36 y^2 = 441\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Hyperbola - Exercise 27.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 27 Hyperbola
Exercise 27.1 | Q 6.3 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±5), foci (0, ±8)


Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±3), foci (0, ±5)


Find the equation of the hyperbola satisfying the given conditions:

Foci (±5, 0), the transverse axis is of length 8.


Find the equation of the hyperbola satisfying the given conditions:

Foci (0, ±13), the conjugate axis is of length 24.


Find the equation of the hyperbola satisfying the given conditions:

Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.


The equation of the directrix of a hyperbola is x − y + 3 = 0. Its focus is (−1, 1) and eccentricity 3. Find the equation of the hyperbola.


Find the equation of the hyperbola whose focus is (1, 1), directrix is 3x + 4y + 8 = 0 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .


Find the equation of the hyperbola whose focus is (a, 0), directrix is 2x − y + a = 0 and eccentricity = \[\frac{4}{3}\].


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

9x2 − 16y2 = 144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 4x2 − 3y2 = 36


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 3x2 − y2 = 4 


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

2x2 − 3y2 = 5.


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the  conjugate axis is 5 and the distance between foci = 13 .


Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).


Find the equation of the hyperbola whose vertices are at (± 6, 0) and one of the directrices is x = 4.


Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).


Find the equation of the hyperbola satisfying the given condition :

vertices (± 2, 0), foci (± 3, 0)


Find the equation of the hyperbola satisfying the given condition :

 vertices (0, ± 5), foci (0, ± 8)


Find the equation of the hyperbola satisfying the given condition:

 foci (0, ± \[\sqrt{10}\], passing through (2, 3).


Write the equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0).


The difference of the focal distances of any point on the hyperbola is equal to


The equation of the hyperbola whose foci are (6, 4) and (−4, 4) and eccentricity 2, is


The foci of the hyperbola 2x2 − 3y2 = 5 are


Find the equation of the hyperbola with vertices at (0, ± 6) and e = `5/3`. Find its foci.


If the distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`, then obtain the equation of the hyperbola.


Find the eccentricity of the hyperbola 9y2 – 4x2 = 36.


Show that the set of all points such that the difference of their distances from (4, 0) and (– 4, 0) is always equal to 2 represent a hyperbola.


The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.


The equation of the hyperbola with vertices at (0, ± 6) and eccentricity `5/3` is ______ and its foci are ______.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×