English

Find the Equation of the Hyperbola Whose Focus is (2, −1), Directrix is 2x + 3y = 1 and Eccentricity = 2 . - Mathematics

Advertisements
Advertisements

Question

Find the equation of the hyperbola whose focus is (2, −1), directrix is 2x + 3y = 1 and eccentricity = 2 .

Answer in Brief

Solution

Let be the focus and  \[P\left( x, y \right)\]  be any point on the hyperbola. Draw PM perpendicular to the directrix.

By definition:
SP = ePM
= ePM

\[\Rightarrow\] \[\sqrt{(x - 2 )^2 + (y + 1 )^2} = 2\left( \frac{2x + 3y - 1}{\sqrt{13}} \right)\] 

Squaring both the sides:

\[(x - 2 )^2 + (y + 1 )^2 = 4 \left( \frac{2x + 3y - 1}{13} \right)^2 \]

\[ \Rightarrow x^2 + 4 - 4x + y^2 + 1 + 2y = \frac{4}{13}\left( 4 x^2 + 9 y^2 + 1 + 12xy - 6y - 4x \right)\]

\[ \Rightarrow 13 x^2 + 52 - 52x + 13 y^2 + 13 + 26y = 16 x^2 + 36 y^2 + 4 + 48xy - 24y - 16x\]

\[ \Rightarrow 3 x^2 + 23 y^2 + 48xy - 50y + 36x - 61 = 0\]

∴ Equation of the hyperbola = \[3 x^2 + 23 y^2 + 48xy - 50y + 36x - 61 = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Hyperbola - Exercise 27.1 [Page 13]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 27 Hyperbola
Exercise 27.1 | Q 2.4 | Page 13

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±5), foci (0, ±8)


Find the equation of the hyperbola satisfying the given conditions:

Vertices (0, ±3), foci (0, ±5)


Find the equation of the hyperbola satisfying the given conditions:

Foci (0, ±13), the conjugate axis is of length 24.


Find the equation of the hyperbola satisfying the given conditions:

Foci `(+-3sqrt5, 0)`, the latus rectum is of length 8.


Find the equation of the hyperbola satisfying the given conditions:

Foci `(0, +- sqrt10)`, passing through (2, 3)


Find the equation of the hyperbola whose focus is (0, 3), directrix is x + y − 1 = 0 and eccentricity = 2 .


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

9x2 − 16y2 = 144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

16x2 − 9y2 = −144


Find the eccentricity, coordinates of the foci, equation of directrice and length of the latus-rectum of the hyperbola .

 3x2 − y2 = 4 


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the distance between the foci = 16 and eccentricity = \[\sqrt{2}\].


Find the equation of the hyperbola, referred to its principal axes as axes of coordinates, in  the  conjugate axis is 5 and the distance between foci = 13 .


Find the equation of the hyperbola whose vertices are (−8, −1) and (16, −1) and focus is (17, −1).


Find the equation of the hyperboala whose focus is at (5, 2), vertex at (4, 2) and centre at (3, 2).


Find the equation of the hyperbola satisfying the given condition :

 vertices (0, ± 5), foci (0, ± 8)


Find the equation of the hyperbola satisfying the given condition :

 foci (0, ± 13), conjugate axis = 24


find the equation of the hyperbola satisfying the given condition:

 vertices (± 7, 0), \[e = \frac{4}{3}\]


Find the equation of the hyperbola satisfying the given condition:

 foci (0, ± \[\sqrt{10}\], passing through (2, 3).


Show that the set of all points such that the difference of their distances from (4, 0) and (− 4,0) is always equal to 2 represents a hyperbola.


Equation of the hyperbola whose vertices are (± 3, 0) and foci at (± 5, 0), is


The difference of the focal distances of any point on the hyperbola is equal to


The foci of the hyperbola 2x2 − 3y2 = 5 are


The equation of the hyperbola whose centre is (6, 2) one focus is (4, 2) and of eccentricity 2 is


Find the equation of the hyperbola whose vertices are (± 6, 0) and one of the directrices is x = 4.


Find the equation of the hyperbola with vertices (± 5, 0), foci (± 7, 0)


The locus of the point of intersection of lines `sqrt(3)x - y - 4sqrt(3)k` = 0 and `sqrt(3)kx + ky - 4sqrt(3)` = 0 for different value of k is a hyperbola whose eccentricity is 2.


The distance between the foci of a hyperbola is 16 and its eccentricity is `sqrt(2)`. Its equation is ______.


Equation of the hyperbola with eccentricty `3/2` and foci at (± 2, 0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×