Advertisements
Advertisements
प्रश्न
If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.
उत्तर
Let the equation of an ellipse is `x^2/a^2 + y^2/b^2` = 1
Length of major axis = 2a
Length of minor axis = 2b
And the length of latus rectum = `(2b^2)/a`
We have `(2b^2)/a = (2b)/2`
⇒ b = `a/2`
Now b2 = a2(1 – e2), where e is the eccentricity
⇒ b2 = 4b2(1 – e2)
⇒ 1 = 4(1 – e2)
⇒ 1 – e2 = `1/4`
⇒ e2 = `1 - 1/4`
⇒ e2 = `3/4`
∴ e = `+- sqrt(3)/2`
So, e = `sqrt(3)/2` ......[∵ e is not (–)]
Hence, the required value of eccentricity is `sqrt(3)/2`.
APPEARS IN
संबंधित प्रश्न
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
`y^2/9 - x^2/27 = 1`
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
9y2 – 4x2 = 36
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
16x2 – 9y2 = 576
Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.
49y2 – 16x2 = 784
Find the centre, eccentricity, foci and directrice of the hyperbola .
16x2 − 9y2 + 32x + 36y − 164 = 0
Find the centre, eccentricity, foci and directrice of the hyperbola.
x2 − y2 + 4x = 0
Find the centre, eccentricity, foci and directrice of the hyperbola .
x2 − 3y2 − 2x = 8.
Find the eccentricity of the hyperbola, the length of whose conjugate axis is \[\frac{3}{4}\] of the length of transverse axis.
If the distance between the foci of a hyperbola is 16 and its ecentricity is \[\sqrt{2}\],then obtain its equation.
Write the eccentricity of the hyperbola 9x2 − 16y2 = 144.
If the foci of the ellipse \[\frac{x^2}{16} + \frac{y^2}{b^2} = 1\] and the hyperbola \[\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}\] coincide, write the value of b2.
If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\]
and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] then write the value of 2 e12 + e22.
The equation of the conic with focus at (1, −1) directrix along x − y + 1 = 0 and eccentricity \[\sqrt{2}\] is
The eccentricity of the conic 9x2 − 16y2 = 144 is
The eccentricity of the hyperbola x2 − 4y2 = 1 is
If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then
If the eccentricity of the hyperbola x2 − y2 sec2α = 5 is \[\sqrt{3}\] times the eccentricity of the ellipse x2 sec2 α + y2 = 25, then α =
The eccentricity the hyperbola \[x = \frac{a}{2}\left( t + \frac{1}{t} \right), y = \frac{a}{2}\left( t - \frac{1}{t} \right)\] is
Given the ellipse with equation 9x2 + 25y2 = 225, find the eccentricity and foci.