मराठी

Find the Centre, Eccentricity, Foci and Directrice of the Hyperbola .16x2 − 9y2 + 32x + 36y − 164 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the centre, eccentricity, foci and directrice of the hyperbola .

16x2 − 9y2 + 32x + 36y − 164 = 0

थोडक्यात उत्तर

उत्तर

The equation \[16 x^2 - 9 y^2 + 32x + 36y - 164 = 0\] can be simplified in the following way:

\[16( x^2 + 2x) - 9\left( y^2 - 4y \right) = 164\]

\[ \Rightarrow 16( x^2 + 2x + 1) - 9\left( y^2 - 4y + 4 \right) = 164 + 16 - 36\]

\[ \Rightarrow 16(x + 1 )^2 - 9 \left( y - 2 \right)^2 = 144\]

\[ \Rightarrow \frac{(x + 1 )^2}{9} - \frac{(y - 2 )^2}{16} = 1\]

Thus, the centre is  \[\left( - 1, 2 \right)\].

Eccentricity of the hyperbola = \[\frac{\sqrt{a^2 + b^2}}{a} = \frac{\sqrt{9 + 16}}{3} = \frac{5}{3}\]

Foci = \[\left( - 1 \pm 5, 2 \right) = \left( - 6, 2 \right), \left( 4, 2 \right)\]

Equation of the directrices:

\[x + 1 = \pm \frac{a}{e}\]

\[ \Rightarrow x = \pm \frac{3 \times 3}{5} - 1\]

\[ \Rightarrow x = \pm \frac{9}{5} - 1\]

\[ \Rightarrow 5x - 4 = 0 \text { or } 5x + 14 = 0\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Hyperbola - Exercise 27.1 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 27 Hyperbola
Exercise 27.1 | Q 5.1 | पृष्ठ १३

संबंधित प्रश्‍न

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`x^2/16 - y^2/9 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

9y2 – 4x2 = 36


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

5y2 – 9x2 = 36


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

49y2 – 16x2 = 784


Find the equation of the hyperbola satisfying the given conditions:

Vertices (±2, 0), foci (±3, 0)


Find the centre, eccentricity, foci and directrice of the hyperbola.

 x2 − y2 + 4x = 0


Find the centre, eccentricity, foci and directrice of the hyperbola .

x2 − 3y2 − 2x = 8.


If the distance between the foci of a hyperbola is 16 and its ecentricity is \[\sqrt{2}\],then obtain its equation.


Write the eccentricity of the hyperbola 9x2 − 16y2 = 144.


Write the coordinates of the foci of the hyperbola 9x2 − 16y2 = 144.


Write the equation of the hyperbola of eccentricity \[\sqrt{2}\],  if it is known that the distance between its foci is 16.


If the foci of the ellipse \[\frac{x^2}{16} + \frac{y^2}{b^2} = 1\] and the hyperbola \[\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}\] coincide, write the value of b2.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\]

and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] then write the value of 2 e12 + e22.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\] and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] , then the relation between e1 and e2 is


The equation of the conic with focus at (1, 1) directrix along x − y + 1 = 0 and eccentricity \[\sqrt{2}\] is


The eccentricity of the conic 9x2 − 16y2 = 144 is 


The eccentricity of the hyperbola whose latus-rectum is half of its transverse axis, is 


The eccentricity of the hyperbola x2 − 4y2 = 1 is 


The distance between the foci of a hyperbola is 16 and its eccentricity is \[\sqrt{2}\], then equation of the hyperbola is


If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then


If the eccentricity of the hyperbola x2 − y2 sec2α = 5 is \[\sqrt{3}\]  times the eccentricity of the ellipse x2 sec2 α + y2 = 25, then α =


The eccentricity the hyperbola \[x = \frac{a}{2}\left( t + \frac{1}{t} \right), y = \frac{a}{2}\left( t - \frac{1}{t} \right)\] is


The locus of the point of intersection of the lines \[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda  + \lambda - 4\sqrt{3} = 0\]  is a hyperbola of eccentricity


If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.


Given the ellipse with equation 9x2 + 25y2 = 225, find the eccentricity and foci.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×