मराठी

Given the ellipse with equation 9x2 + 25y2 = 225, find the eccentricity and foci. - Mathematics

Advertisements
Advertisements

प्रश्न

Given the ellipse with equation 9x2 + 25y2 = 225, find the eccentricity and foci.

बेरीज

उत्तर

Given equation of ellipse is 9x2 + 25y2 = 225

⇒ `9/225 x^2 + 25/225 y^2` = 1

⇒ `x^2/25 + y^2/9` = 1

Here a = 5 and b = 3

b2 = a2(1 – e2)

⇒ 9 = 25(1 – e2

⇒ 1 – e2 = `9/25`

⇒ e2 = `1 - 9/25 = 16/25`

 e = `4/5`

Now foci = (± ae, 0)

= `(+- 5 xx 4/5, 0)`

= (± 4, 0).

Hence, eccentricity = `4/5`, foci = (± 4, 0).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Conic Sections - Exercise [पृष्ठ २०२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 11 Conic Sections
Exercise | Q 12 | पृष्ठ २०२

संबंधित प्रश्‍न

Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

`y^2/9 - x^2/27 = 1`


Find the coordinates of the foci and the vertices, the eccentricity, and the length of the latus rectum of the hyperbola.

9y2 – 4x2 = 36


Find the equation of the hyperbola satisfying the given conditions:

Vertices (±2, 0), foci (±3, 0)


Find the centre, eccentricity, foci and directrice of the hyperbola .

16x2 − 9y2 + 32x + 36y − 164 = 0


Find the centre, eccentricity, foci and directrice of the hyperbola .

x2 − 3y2 − 2x = 8.


If the distance between the foci of a hyperbola is 16 and its ecentricity is \[\sqrt{2}\],then obtain its equation.


Write the coordinates of the foci of the hyperbola 9x2 − 16y2 = 144.


If the foci of the ellipse \[\frac{x^2}{16} + \frac{y^2}{b^2} = 1\] and the hyperbola \[\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}\] coincide, write the value of b2.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\]

and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] then write the value of 2 e12 + e22.


If e1 and e2 are respectively the eccentricities of the ellipse \[\frac{x^2}{18} + \frac{y^2}{4} = 1\] and the hyperbola \[\frac{x^2}{9} - \frac{y^2}{4} = 1\] , then the relation between e1 and e2 is


The equation of the conic with focus at (1, 1) directrix along x − y + 1 = 0 and eccentricity \[\sqrt{2}\] is


The eccentricity of the conic 9x2 − 16y2 = 144 is 


The eccentricity of the hyperbola x2 − 4y2 = 1 is 


The distance between the foci of a hyperbola is 16 and its eccentricity is \[\sqrt{2}\], then equation of the hyperbola is


If e1 is the eccentricity of the conic 9x2 + 4y2 = 36 and e2 is the eccentricity of the conic 9x2 − 4y2 = 36, then


If the eccentricity of the hyperbola x2 − y2 sec2α = 5 is \[\sqrt{3}\]  times the eccentricity of the ellipse x2 sec2 α + y2 = 25, then α =


The locus of the point of intersection of the lines \[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda  + \lambda - 4\sqrt{3} = 0\]  is a hyperbola of eccentricity


If the latus rectum of an ellipse is equal to half of minor axis, then find its eccentricity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×