हिंदी

Find the equation of ellipse whose eccentricity is 23, latus rectum is 5 and the centre is (0, 0). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of ellipse whose eccentricity is `2/3`, latus rectum is 5 and the centre is (0, 0).

योग

उत्तर

Equations of ellipse is `x^2/a^2 + y^2/b^2` = 1  ......(i)

Given that, e = `2/3`

And latus rectum `(2b^2)/a` = 5

⇒ `b^2 = 5/2 a`   .......(ii)

We know that b2 = a2 (1 – e2)

⇒ `(5a)/2 = a^2(1 - 4/9)`

⇒ `5/2 = a xx 5/9`

⇒ `a = 9/2`

⇒ `a^2 = 81/4`

And b2 = `5/2 xx 9/2 = 45/4`

Hence, the required equation of ellipse is `x^2(81/4) + y^2/(45/4)` = 1

⇒ `4/81 x^2 + 4/45 y^2` = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Conic Sections - Exercise [पृष्ठ २०३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 11 Conic Sections
Exercise | Q 14 | पृष्ठ २०३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equation for the ellipse that satisfies the given condition:

Vertices (±5, 0), foci (±4, 0)


Find the equation for the ellipse that satisfies the given conditions:

Vertices (0, ±13), foci (0, ±5)


Find the equation for the ellipse that satisfies the given conditions:

Ends of major axis (0, `+- sqrt5`), ends of minor axis (±1, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of major axis 26, foci (±5, 0)


Find the equation for the ellipse that satisfies the given conditions:

Length of minor axis 16, foci (0, ±6)


Find the equation for the ellipse that satisfies the given conditions:

Foci (±3, 0), a = 4


Find the equation for the ellipse that satisfies the given conditions:

b = 3, c = 4, centre at the origin; foci on the x axis.


Find the equation for the ellipse that satisfies the given conditions:

Centre at (0, 0), major axis on the y-axis and passes through the points (3, 2) and (1, 6)


A man running a racecourse notes that the sum of the distances from the two flag posts form him is always 10 m and the distance between the flag posts is 8 m. find the equation of the posts traced by the man.


Find the equation of the ellipse in the case: 

 focus is (0, 1), directrix is x + y = 0 and e = \[\frac{1}{2}\] .

 

 


Find the equation of the ellipse in the case: 

focus is (−2, 3), directrix is 2x + 3y + 4 = 0 and e = \[\frac{4}{5}\]

 
 

 


Find the equation to the ellipse (referred to its axes as the axes of x and y respectively) which passes through the point (−3, 1) and has eccentricity \[\sqrt{\frac{2}{5}}\]

 

Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\] and foci (± 2, 0)


Find the equation of the ellipse in the case:

eccentricity e = \[\frac{1}{2}\]  and major axis = 12

 

 


Find the equation of the ellipse in the following case: 

Vertices (± 6, 0), foci (± 4, 0) 


Find the equation of the ellipse in the following case: 

Length of major axis 26, foci (± 5, 0) 


Find the equation of the ellipse in the following case:  

Length of minor axis 16 foci (0, ± 6)


Find the equation of the ellipse in the following case:  

Foci (± 3, 0), a = 4


A bar of given length moves with its extremities on two fixed straight lines at right angles. Any point of the bar describes an ellipse.


The line 2x + 3y = 12 touches the ellipse `x^2/9 + y^2/4` = 2 at the point (3, 2).


An ellipse is described by using an endless string which is passed over two pins. If the axes are 6 cm and 4 cm, the length of the string and distance between the pins are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×