Advertisements
Advertisements
प्रश्न
Find the equations of tangent and normal to the curve y = 2x3 − x2 + 2 at point `(1/2, 2)`.
योग
उत्तर
Given: y = 2x3 − x2 + 2
Differentiate w. r. t. x
`dy/dx = d/dx (2x^3 - x^2 + 2)`
= 6x2 − 2x
Slope of tangent at `(1/2, 2)` = m = `6(1/2)^2 - 2(1/2)`
∴ m = `1/2`
Slope of normal at `(1/2, 2)` = m' = −2
Equation of tangent is given by
`y − 2 = 1/2(x − 1/2)`
`2y - 4 = (2x - 1)/2`
4y − 8 = 2x − 1
2x − 4y + 7 = 0
Equation of normal is given by
`y - 2 = -2(x - 1/2)`
y − 2 = −2x + 1
2x + y − 3 = 0
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?