हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएसएसएलसी (अंग्रेजी माध्यम) कक्षा ९

Find the mode of the following distribution Weight (in kgs) 25 − 34 35 − 44 45 − 54 55 − 64 65 − 74 75 − 84 Number of students 4 8 10 14 8 6 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the mode of the following distribution:

Weight (in kgs) 25 − 34 35 − 44 45 − 54 55 − 64 65 − 74 75 − 84
Number of students 4 8 10 14 8 6
योग

उत्तर

In the given table the class intervals are in inclusive form; convert them into exclusive form.

Class Mid value
(x)
frequency
(f)
fx cf
24.5 − 34.5 29.5 4 118 4
34.5 − 44.5 39.5 8 316 12
44.5 − 54.5 49.5 10 495 22
54.5 − 64.5 59.5 14 833 36
64.5 − 74.5 69.5 8 556 44
74.5 − 84.5 79.5 6 477 50
    `sumf` = 50 `sumfx` = 2975  

The highest frequency is 14

Modal class is 54.5 – 64.5

Here l = 54.5, f = 14, f1 = 10, f2 = 8 and c = 10

mode = `"l" + ((f - f_1)/(2f - f_1 - f_2)) xx "c"`

= `54.5 + ((14 - 10))/((28 - 10 - 8)) xx 10`

= `54.5 + (4 xx 10)/10`

= 58.5

∴ Mode = 58.5

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Statistics - Exercise 8.3 [पृष्ठ २८७]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 9 TN Board
अध्याय 8 Statistics
Exercise 8.3 | Q 6 | पृष्ठ २८७

संबंधित प्रश्न

A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data.

Number of cars 0 − 10 10 − 20 20 − 30 30 − 40 40 − 50 50 − 60 60 − 70 70 − 80
Frequency 7 14 13 12 20 11 15 8

The following is the distribution of height of students of a certain class in a certain city:

Height (in cm): 160 - 162 163 - 165 166 - 168 169 - 171 172 - 174
No. of students: 15 118 142 127 18

Find the average height of maximum number of students.


Find the mean, median and mode of the following data: 

Classes: 0 – 50 50 – 100 100 – 150 150 – 200 200 – 250 250 – 300 300 – 350
Frequency: 2 3 5 6 5 3 1

Find the mode of the following distribution:

Class
interval
10 – 14 14 – 18 18 – 22 22 – 26 26 – 30 30 – 34 34 – 38 38 – 42
Frequency 8 6 11 20 25 22 10 4

 

 


The agewise participation of students in the annual function of a school is shown in the following distribution.

Age (in years) 5 - 7 7 - 9 9 - 11 11 – 13 13 – 15 15 – 17 17 – 19
Number of students x 15 18 30 50 48 x

Find the missing frequencies when the sum of frequencies is 181. Also find the mode of the data.


Find out the mode from the following data:

Wages (in ₹) No. of persons
125 3
175 8
225 21
275 6
325 4
375 2

Mode is the ______.


If xi's are the midpoints of the class intervals of grouped data, fi's are the corresponding frequencies and `barx` is the mean, then `sum(f_ix_i-barx)` is equal to ______.


If L = 10, f1 = 70, f0 = 58, f2 = 42, h = 2, then find the mode by using formula.


The upper limit of the modal class of the given distribution is:

Height [in cm] Below 140 Below 145 Below 150 Below 155 Below 160 Below 165
Number of girls 4 11 29 40 46 51

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×