Advertisements
Advertisements
प्रश्न
Find the mean, median and mode of the following data:
Classes: | 0 – 50 | 50 – 100 | 100 – 150 | 150 – 200 | 200 – 250 | 250 – 300 | 300 – 350 |
Frequency: | 2 | 3 | 5 | 6 | 5 | 3 | 1 |
उत्तर
Class interval |
Mid value()x | Frequency(fi) | fixi | Cumulative frequency |
0 – 50 | 25 | 2 | 50 | 2 |
50 – 100 | 75 | 3 | 225 | 5 |
100 – 150 | 125 | 5 | 625 | 10 |
150 – 200 | 175 | 6 | 1050 | 16 |
200 – 250 | 225 | 5 | 1125 | 21 |
250 – 300 | 275 | 3 | 825 | 24 |
300 – 350 | 325 | 1 | 325 | 25 |
N = 25 | `sumfx=4225` |
Here, the maximum frequency is 6 so the modal class 150 − 200.
Therefore,
l = 150
h = 50
f = 6
f1 = 5
f2 = 5
F = 10
Mean `=(sumfx)/N=4225/25=169`
Thus, the mean of the data is 169.
We have N = 25 then N/2 = 12.5
Median `=l+(N/2-F)/fxxh`
`=150+(12.5-10)/6xx50`
`=150+2.5/6xx50`
`=150+125/6`
= 150 + 20.83
= 170.83
Thus, the median of the data is 170.83.
Mode `=l+(f-f1)/(2f-f1-f2)xxh`
`=150+(6-5)/(2xx6-5-5)xx50`
`=150+1/(12-10)xx50`
`=150+1/2xx50`
`=150+50/2`
= 150 + 25
= 175
Thus, the mode of the data is 175.
APPEARS IN
संबंधित प्रश्न
The following frequency distribution gives the monthly consumption of electricity of 68 consumers of a locality. Find the median, mean and mode of the data and compare them.
Monthly consumption (in units) | Number of consumers |
65 - 85 | 4 |
85 - 105 | 5 |
105 - 125 | 13 |
125 - 145 | 20 |
145 - 165 | 14 |
165 - 185 | 8 |
185 - 205 | 4 |
The shirt sizes worn by a group of 200 persons, who bought the shirt from a store, are as follows:
Shirt size: | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 |
Number of persons: | 15 | 25 | 39 | 41 | 36 | 17 | 15 | 12 |
Find the model shirt size worn by the group.
Find the mode of the following distribution:
Marks | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Frequency | 12 | 35 | 45 | 25 | 13 |
Compute the mode from the following series:
Size | 45 – 55 | 55 – 65 | 65 – 75 | 75 – 85 | 85 – 95 | 95 – 105 | 105 - 115 |
Frequency | 7 | 12 | 17 | 30 | 32 | 6 | 10 |
Compute the mode from the following data:
Class interval | 1 – 5 | 6 – 10 | 11 – 15 | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 36 – 40 | 41 – 45 | 46 – 50 |
Frequency | 3 | 8 | 13 | 18 | 28 | 20 | 13 | 8 | 6 | 4 |
For the following distribution
C.l. | 0 - 5 | 5 - 10 | 10 - 15 | 15 - 20 | 20 - 25 |
f | 10 | 15 | 12 | 20 | 9 |
the difference of the upper limit of the median class and the lower limit of the modal class is?
Find the mode of the following data.
Class interval | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Frequency | 7 | 13 | 14 | 5 | 11 |
Which of the following is not a measure of central tendency?
Find the mode of the following frequency distribution:
Class: | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 | 60 – 70 |
Frequency: | 25 | 30 | 45 | 42 | 35 |
The upper limit of the modal class of the given distribution is:
Height [in cm] | Below 140 | Below 145 | Below 150 | Below 155 | Below 160 | Below 165 |
Number of girls | 4 | 11 | 29 | 40 | 46 | 51 |