Advertisements
Advertisements
प्रश्न
Find the remainder when the polynomial f(x) = 2x4 - 6x3 + 2x2 - x + 2 is divided by x + 2.
उत्तर
If x + 2 = 0
x = -2
f(x) = 2x4 - 6x3 + 2x2 - x + 2, ...[By remainder theorem]
f(-2) = 2(-2)4 - 6(-2)3 + 2(-2)2 - (-2) + 2
= 2(16) -6(-8) + 2(4) + 2 + 2
= 32 + 48 + 8 + 2 + 2 = 92
Hence, required remainder = 92.
APPEARS IN
संबंधित प्रश्न
Use Remainder theorem to factorize the following polynomial:
`2x^3 + 3x^2 - 9x - 10`
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
2x – 1
Using the Remainder Theorem, factorise the expression 3x3 + 10x2 + x – 6. Hence, solve the equation 3x3 + 10x2 + x – 6 = 0
Find the remainder (without divisions) on dividing f(x) by x – 2, where f(x) = 2x3 – 7x2 + 3
Using remainder theorem, find the remainder on dividing f(x) by (x + 3) where f(x) = 2x2 – 5x + 1
What number must be added to 2x3 – 7x2 + 2x so that the resulting polynomial leaves the remainder – 2 when divided by 2x – 3?
Use the Remainder Theorem to factorise the following expression:
2x3 + x2 – 13x + 6
If x3 + 6x2 + kx + 6 is exactly divisible by (x + 2), then k = ?
If x51 + 51 is divided by x + 1, then the remainder is
Determine which of the following polynomials has x – 2 a factor:
4x2 + x – 2