हिंदी

Find the square root of the following complex number: 2(1-3i) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find the square root of the following complex number: 

`2(1 - sqrt(3)"i")`

योग

उत्तर

Let `sqrt(2(1 -sqrt3"i")` = a + bi, where a, b ∈ R

Squaring on both sides, we get

`2(1 - sqrt(3)"i")` = a2 + b2i2 + 2abi

∴ `2 - 2sqrt(3)"i"` = (a2 – b2) + 2abi   ...[∵ i2 = – 1]

Equating real and imaginary parts, we get

a2 – b2 = 2 and 2ab = `-2sqrt(3)`

∴ a2 – b2 = 2 and b = `-sqrt(3)/"a"`

∴ `"a"^2 - (-(sqrt(3))/"a")^2` = 2

∴ `"a"^2 - 3/"a"^2` = 2

∴ a4 – 3 = 2a2

∴ a4 – 2a2 – 3 = 0

∴ (a2 – 3)(a2 + 1) = 0

∴ a2 = 3 or a2 = – 1

But a ∈ R

∴ a2 ≠ – 1

∴ a2 = 3

∴ a = `± sqrt(3)`

When a = `sqrt(3)`, b = `(-sqrt(3))/sqrt(3)` = – 1

When a = `-sqrt(3)`, b = `(-sqrt(3))/-sqrt(3)` = 1

∴ `sqrt(2(1 - sqrt(3)"i")) = ± (sqrt(3) - "i")`

shaalaa.com
Square Root of a Complex Number
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1: Complex Numbers - Exercise 1.2 [पृष्ठ ९]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 1 Complex Numbers
Exercise 1.2 | Q 1. (v) | पृष्ठ ९
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×