Advertisements
Online Mock Tests
Chapters
![Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 1 - Complex Numbers Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 1 - Complex Numbers - Shaalaa.com](/images/mathematics-and-statistics-2-arts-and-science-english-11-standard-maharashtra-state-board_6:eaa36ca82be449018bee0683dd2bba6f.jpg)
Advertisements
Solutions for Chapter 1: Complex Numbers
Below listed, you can find solutions for Chapter 1 of Maharashtra State Board Balbharati for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board.
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 1 Complex Numbers Exercise 1.1 [Pages 5 - 7]
Simplify : `sqrt(-16) + 3sqrt(-25) + sqrt(-36) - sqrt(-625)`
Simplify : `4sqrt(-4) + 5sqrt(-9) - 3sqrt(-16)`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Write the conjugates of the following complex number:
cosθ + i sinθ
Find a and b if a + 2b + 2ai = 4 + 6i
Find a and b if (a – b) + (a + b)i = a + 5i
Find a and b if (a+b) (2 + i) = b + 1 + (10 + 2a)i
Find a and b if abi = 3a − b + 12i
Find a and b if `1/("a" + "ib")` = 3 – 2i
Find a and b if (a + ib) (1 + i) = 2 + i
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
(1 + i)(1 − i)−1
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`((1 + "i")/(1 - "i"))^2`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(3 + 2"i")/(2 - 5"i") + (3 -2"i")/(2 + 5"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(1 + i)−3
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
`(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b ∈ R i = `sqrt(−1)`. State the values of a and b:
`(- sqrt(5) + 2sqrt(-4)) + (1 -sqrt(-9)) + (2 + 3"i")(2 - 3"i")`
Express the following in the form of a + ib, a, b∈R i = `sqrt(−1)`. State the values of a and b:
(2 + 3i)(2 – 3i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(−1)`. State the values of a and b:
`(4"i"^8 - 3"i"^9 + 3)/(3"i"^11 - 4"i"^10 - 2)`
Show that `(-1 + sqrt(3)"i")^3` is a real number
Find the value of `(3 + 2/"i")("i"^6 - "i"^7)(1 + "i"^11)`
Evaluate the following : i35
Evaluate the following : i888
Evaluate the following : i93
Evaluate the following : i116
Evaluate the following : i403
Evaluate the following : `1/"i"^58`
Evaluate the following : i–888
Evaluate the following : i30 + i40 + i50 + i60
Show that 1 + i10 + i20 + i30 is a real number
Find the value of i49 + i68 + i89 + i110
Find the value of i + i2 + i3 + i4
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
Show that 1 + i10 + i100 − i1000 = 0
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Evaluate: `("i"^37 + 1/"i"^67)`
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 1 Complex Numbers Exercise 1.2 [Pages 9 - 10]
Find the square root of the following complex number: −8 − 6i
Find the square root of the following complex number:
7 + 24i
Find the square root of the following complex number:
`1 + 4sqrt(3)"i"`
Find the square root of the following complex number:
`3 + 2sqrt(10)"i"`
Find the square root of the following complex number:
`2(1 - sqrt(3)"i")`
Solve the following quadratic equation.
8x2 + 2x + 1 = 0
Solve the following quadratic equation
`2x^2 - sqrt(3)x + 1` = 0
Solve the following quadratic equation.
3x2 − 7x + 5 = 0
Solve the following quadratic equation.
x2 − 4x + 13 = 0
Solve the following quadratic equation.
x2 + 3ix + 10 = 0
Solve the following quadratic equation.
2x2 + 3ix + 2 = 0
Solve the following quadratic equation.
x2 + 4ix − 4 = 0
Solve the following quadratic equation.
ix2 − 4x − 4i = 0
Solve the following quadratic equation.
x2 − (2 + i)x − (1 − 7i) = 0
Solve the following quadratic equation.
`x^2 - (3sqrt(2) +2"i") x + 6sqrt(2)"i"` = 0
Solve the following quadratic equation.
x2 − (5 − i) x + (18 + i) = 0
Solve the following quadratic equation.
(2 + i)x2 − (5 − i) x + 2(1 − i) = 0
Find the value of x3 − x2 + x + 46, if x = 2 + 3i
Find the value of 2x3 − 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Find the value of x3 + x2 − x + 22, if x = `5/(1 - 2"i")`
Find the value of x4 + 9x3 + 35x2 − x + 4, if x = `-5+sqrt(-4)`
Find the value of 2x4 + 5x3 + 7x2 − x + 41, if x = `-2 - sqrt(3)"i"`
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 1 Complex Numbers Exercise 1.3 [Page 15]
Find the modulus and amplitude of the following complex numbers.
7 − 5i
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) + sqrt(2)"i"`
Find the modulus and amplitude of the following complex numbers.
−8 + 15i
Find the modulus and amplitude of the following complex numbers.
−3(1 − i)
Find the modulus and amplitude of the following complex numbers.
−4 − 4i
Find the modulus and amplitude of the following complex numbers.
`sqrt(3) - "i"`
Find the modulus and amplitude of the following complex numbers.
3
Find the modulus and amplitude of the following complex numbers.
1 + i
Find the modulus and amplitude of the following complex numbers.
`1 + "i"sqrt(3)`
Find the modulus and amplitude of the following complex numbers.
(1 + 2i)2 (1 − i)
Find real values of θ for which `((4 + 3"i" sintheta)/(1 - 2"i" sin theta))` is purely real.
If z = 3 + 5i then represent the `"z", bar("z"), - "z", bar(-"z")` in Argand's diagram
Express the following complex numbers in polar form and exponential form:
`-1 + sqrt(3)"i"`
Express the following complex numbers in polar form and exponential form:
− i
Express the following complex numbers in polar form and exponential form:
−1
Express the following complex numbers in polar form and exponential form:
`1/(1 + "i")`
Express the following complex numbers in polar form and exponential form:
`(1 + 2"i")/(1 - 3"i")`
Express the following complex numbers in polar form and exponential form:
`(1 + 7"i")/(2 - "i")^2`
Express the following numbers in the form x + iy:
`sqrt(3)(cos pi/6 + "i" sin pi/6)`
Express the following numbers in the form x + iy:
`sqrt(2)(cos (7pi)/4 + "i" sin (7pi)/4)`
Express the following numbers in the form x + iy:
`7(cos(-(5pi)/6) + "i" sin (- (5pi)/6))`
Express the following numbers in the form x + iy:
`"e"^(pi/3"i")`
Express the following numbers in the form x + iy:
`"e"^((-4pi)/3"i")`
Express the following numbers in the form x + iy:
`"e"^((5pi)/6"i")`
Find the modulus and argument of the complex number `(1 + 2"i")/(1 - 3"i")`
Convert the complex number z = `("i" - 1)/(cos pi/3 + "i" sin pi/3)` in the polar form
For z = 2 + 3i verify the following:
`bar((bar"z"))` = z
For z = 2 + 3i verify the following:
`"z"bar("z")` = |z|2
For z = 2 + 3i verify the following:
`("z" + bar"z")` is real
For z = 2 + 3i verify the following:
`"z" - bar"z"` = 6i
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 + "z"_2) = bar("z"_1) + bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1 - "z"_2) = bar("z"_1) - bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar("z"_1."z"_2) = bar("z"_1).bar("z"_2)`
z1 = 1 + i, z2 = 2 − 3i. Verify the following :
`bar(("z"_1/"z"_2))=bar("z"_1)/bar("z"_2)`
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 1 Complex Numbers Exercise 1.4 [Page 20]
Find the value of ω18
Find the value of ω21
Find the value of ω–30
Find the value of ω–105
If ω is a complex cube root of unity, show that (2 − ω)(2 − ω2) = 7
If ω is a complex cube root of unity, show that (1 + ω − ω2)6 = 64
If ω is a complex cube root of unity, show that (1 + ω)3 − (1 + ω2)3 = 0
If ω is a complex cube root of unity, show that (2 + ω + ω2)3 − (1 − 3ω + ω2)3 = 65
If ω is a complex cube root of unity, show that (3 + 3ω + 5ω2)6 − (2 + 6ω + 2ω2)3 = 0
If ω is a complex cube root of unity, show that `("a" + "b"ω + "c"ω^2)/("c" + "a"ω + "b"ω^2)` = ω2
If ω is a complex cube root of unity, show that (a + b) + (aω + bω2) + (aω2 + bω) = 0
If ω is a complex cube root of unity, show that (a − b) (a − bω) (a − bω2) = a3 − b3
If ω is a complex cube root of unity, show that (a + b)2 + (aω + bω2)2 + (aω2 + bω)2 = 6ab
If ω is a complex cube root of unity, find the value of `ω + 1/ω`
If ω is a complex cube root of unity, find the value of ω2 + ω3 + ω4
If ω is a complex cube root of unity, find the value of (1 + ω2)3
If ω is a complex cube root of unity, find the value of (1 − ω − ω2)3 + (1 − ω + ω2)3
If ω is a complex cube root of unity, find the value of (1 + ω)(1 + ω2)(1 + ω4)(1 + ω8)
If α and β are the complex cube root of unity, show that α2 + β2 + αβ = 0
If α and β are the complex cube root of unity, show that α4 + β4 + α−1β−1 = 0
If , where α and β are the complex cube-roots of unity, show that xyz = a3 + b3.
Find the equation in cartesian coordinates of the locus of z if |z| = 10
Find the equation in cartesian coordinates of the locus of z if |z – 3| = 2
Find the equation in cartesian coordinates of the locus of z if |z − 5 + 6i| = 5
Find the equation in cartesian coordinates of the locus of z if |z + 8| = |z – 4|
Find the equation in cartesian coordinates of the locus of z if |z – 2 – 2i| = |z + 2 + 2i|
Find the equation in cartesian coordinates of the locus of z if `|("z" + 3"i")/("z" - 6"i")|` = 1
Use De Moivres theorem and simplify the following:
`(cos2theta + "i"sin2theta)^7/(cos4theta + "i"sin4theta)^3`
Use De Moivres theorem and simplify the following:
`(cos5theta + "i"sin5theta)/((cos3theta - "i"sin3theta)^2`
Use De Moivres theorem and simplify the following:
`(cos (7pi)/13 + "i"sin (7pi)/13)^4/(cos (4pi)/13 - "i"sin (4pi)/13)^6`
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 − i)5
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
(1 + i)6
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(1 - sqrt(3)"i")^4`
Express the following in the form a + ib, a, b ∈ R, using De Moivre's theorem:
`(-2sqrt(3) - 2"i")^5`
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 1 Complex Numbers Miscellaneous Exercise 1.1 [Page 21]
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
−4i
0
4i
4
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
−2
1
0
−1
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
`-3sqrt(2)`
`3sqrt(2)`
`3sqrt(2)"i"`
`-3sqrt(2)"i"`
Select the correct answer from the given alternatives:
If ω is a complex cube root of unity, then the value of ω99+ ω100 + ω101 is :
−1
1
0
3
Select the correct answer from the given alternatives:
If z = r(cos θ + i sin θ), then the value of `"z"/bar("z") + bar("z")/"z"`
cos 2θ
2 cos 2θ
2 cos θ
2 sin θ
If ω(≠1) is a cube root of unity and (1 + ω)7 = A + Bω, then A and B are respectively the numbers ______.
0, 1
1, 1
1, 0
−1, 1
Select the correct answer from the given alternatives:
The modulus and argument of `(1 + "i"sqrt(3))^8` are respectively
2 and `(2pi)/3`
256 and `(8pi)/3`
256 and `(2pi)/3`
64 and `(4pi)/3`
Select the correct answer from the given alternatives:
If arg(z) = θ, then arg `bar(("z"))` =
– θ
θ
π – θ
π + θ
Select the correct answer from the given alternatives:
If `-1 + sqrt(3)"i"` = reiθ , then θ = .................
`-(2pi)/3`
`pi/3`
`-pi/3`
`(2pi)/3`
Select the correct answer from the given alternatives:
If z = x + iy and |z − zi| = 1 then
z lies on x-asis
z lies on y-asis
z lies on a rectangle
z lies on a circle
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board 1 Complex Numbers Miscellaneous Exercise 1.2 [Pages 21 - 22]
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Evaluate: (1 − i + i2)−15
Answer the following:
Evaluate: i131 + i49
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Find the square root of −16 + 30i
Answer the following:
Find the square root of 15 – 8i
Answer the following:
Find the square root of `2 + 2sqrt(3)"i"`
Answer the following:
Find the square root of 18i
Answer the following:
Find the square root of 3 − 4i
Answer the following:
Find the square root of 6 + 8i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
8 + 15i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
6 − i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(1 + sqrt(3)"i")/2`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`(-1 - "i")/sqrt(2)`
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
2i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
− 3i
Answer the following:
Find the modulus and argument of a complex number and express it in the polar form.
`1/sqrt(2) + 1/sqrt(2)"i"`
Answer the following:
Represent 1 + 2i, 2 − i, −3 − 2i, −2 + 3i by points in Argand's diagram.
Answer the following:
Show that z = `5/((1 - "i")(2 - "i")(3 - "i"))` is purely imaginary number.
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `(2 + 6sqrt(3)"i")/(5 + sqrt(3)"i")`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
z = `-6 + sqrt(2)"i"`
Answer the following:
Convert the complex numbers in polar form and also in exponential form.
`(-3)/2 + (3sqrt(3))/2"i"`
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
Answer the following:
If α and β are complex cube roots of unity, prove that (1 − α)(1 − β) (1 − α2)(1 − β2) = 9
Answer the following:
If ω is a complex cube root of unity, prove that (1 − ω + ω2)6 +(1 + ω − ω2)6 = 128
If ω is the cube root of unity then find the value of `((-1 + "i"sqrt(3))/2)^18 + ((-1 - "i"sqrt(3))/2)^18`
Solutions for 1: Complex Numbers
![Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 1 - Complex Numbers Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 1 - Complex Numbers - Shaalaa.com](/images/mathematics-and-statistics-2-arts-and-science-english-11-standard-maharashtra-state-board_6:eaa36ca82be449018bee0683dd2bba6f.jpg)
Balbharati solutions for Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 1 - Complex Numbers
Shaalaa.com has the Maharashtra State Board Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board Maharashtra State Board solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. Balbharati solutions for Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board Maharashtra State Board 1 (Complex Numbers) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. Balbharati textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board chapter 1 Complex Numbers are Introduction of Complex Number, Concept of Complex Numbers, Algebraic Operations of Complex Numbers, Square Root of a Complex Number, Fundamental Theorem of Algebra, Argand Diagram Or Complex Plane, De Moivres Theorem, Cube Root of Unity, Set of Points in Complex Plane.
Using Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board solutions Complex Numbers exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in Balbharati Solutions are essential questions that can be asked in the final exam. Maximum Maharashtra State Board Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board students prefer Balbharati Textbook Solutions to score more in exams.
Get the free view of Chapter 1, Complex Numbers Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board additional questions for Mathematics Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board Maharashtra State Board, and you can use Shaalaa.com to keep it handy for your exam preparation.