Advertisements
Advertisements
प्रश्न
Show that 1 + i10 + i100 − i1000 = 0
उत्तर
L.H.S. = 1 + i10 + i100 − i1000
= 1 + (i2)5 + (i2)50 – (i2)500
= 1 + (–1)5 + (–1)50 – (–1)500
= 1 – 1 + 1 – 1
= 0
=R.H.S.
APPEARS IN
संबंधित प्रश्न
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
If `((1 + i)/(1 - i))^x` = 1, then ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`