Advertisements
Advertisements
प्रश्न
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
विकल्प
1
–1
2
–2
उत्तर
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = 1.
Explanation:
Given that: `((3 - 4ix)/(3 + 4ix))` = α − iβ
⇒ `((3 - 4ix)/(3 + 4ix) xx (3 - 4ix)/(3 - 4ix))` = α − iβ
⇒ `(9 - 12ix - 12ix + 16i^2 x^2)/(9 - 16i^2 x^2)` = α − iβ
⇒ `(9 - 24ix - 16x^2)/(9 + 16x^2)` = α − iβ
⇒ `(9 - 16x^2)/(9 + 16x^2) - (24x)/(9 + 16x^2) i` = α − iβ .....(i)
⇒ `(9 - 16x^2)/(9 + 16x^2) + (24x)/(9 + 16x^2) i` = α + iβ
Multiplying equation (i) and (ii) we get
⇒ `((9 - 16x^2)/(9 + 16x^2))^2 + ((24x)/(9 + 16x^2))^2` = α2 + β2
⇒ `((9 - 16x^2)^2 + (24x)^2)/(9 + 16x^2)^2` = α2 + β2
⇒ `(81 + 256x^4 - 288x^2 + 576x^2)/(9 + 16x^2)^2` = α2 + β2
⇒ `(81 + 256x^4 + 288x^2)/(9 + 16x^2)^2` = α2 + β2
⇒ `(9 + 16x^2)^2/(9 + 16x^2)^2` = α2 + β2
So, = α2 + β2 = 1
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Evaluate: i131 + i49
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
1 + i2 + i4 + i6 + ... + i2n is ______.
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If |z + 1| = z + 2(1 + i), then find z.
Multiplicative inverse of 1 + i is ______.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
Find `|(1 + i) ((2 + i))/((3 + i))|`.
Which of the following is correct for any two complex numbers z1 and z2?
If z is a complex number, then ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Find the value of `sqrt(-3) xx sqrt(-6)`
Evaluate the following:
i35