हिंदी

A real value of x satisfies the equation (3-4ix3+4ix) = α − iβ (α, β ∈ R) if α2 + β2 = ______. - Mathematics

Advertisements
Advertisements

प्रश्न

A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.

विकल्प

  • 1

  • –1

  • 2

  • –2

MCQ
रिक्त स्थान भरें

उत्तर

A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = 1.

Explanation:

Given that: `((3 - 4ix)/(3 + 4ix))` = α − iβ

⇒ `((3 - 4ix)/(3 + 4ix) xx (3 - 4ix)/(3 - 4ix))` = α − iβ

⇒ `(9 - 12ix - 12ix + 16i^2 x^2)/(9 - 16i^2 x^2)` = α − iβ 

⇒ `(9 - 24ix - 16x^2)/(9 + 16x^2)` = α − iβ 

⇒ `(9 - 16x^2)/(9 + 16x^2) - (24x)/(9 + 16x^2) i` = α − iβ   .....(i)

⇒ `(9 - 16x^2)/(9 + 16x^2) + (24x)/(9 + 16x^2) i` = α + iβ

Multiplying equation (i) and (ii) we get

⇒ `((9 - 16x^2)/(9 + 16x^2))^2 + ((24x)/(9 + 16x^2))^2` = α2 + β2

⇒ `((9 - 16x^2)^2 + (24x)^2)/(9 + 16x^2)^2` = α2 + β2

⇒ `(81 + 256x^4 - 288x^2 + 576x^2)/(9 + 16x^2)^2` = α2 + β2

⇒ `(81 + 256x^4 + 288x^2)/(9 + 16x^2)^2` = α2 + β2

⇒ `(9 + 16x^2)^2/(9 + 16x^2)^2` = α2 + β2

So, = α2 + β= 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 40 | पृष्ठ ९६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the multiplicative inverse of the complex number.

`sqrt5 + 3i`


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of: x3 –  x2 + x + 46, if x = 2 + 3i


Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.


Is (1 + i14 + i18 + i22) a real number? Justify your answer


Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16


Select the correct answer from the given alternatives:

`sqrt(-3) sqrt(-6)` is equal to


Answer the following:

Evaluate: i131 + i49 


Answer the following:

show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2


Answer the following:

Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`


If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.


If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.


If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.


Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?


1 + i2 + i4 + i6 + ... + i2n is ______.


If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.


If |z + 1| = z + 2(1 + i), then find z.


Multiplicative inverse of 1 + i is ______.


State True or False for the following:

The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).


Find `|(1 + i) ((2 + i))/((3 + i))|`.


Which of the following is correct for any two complex numbers z1 and z2?


If z is a complex number, then ______.


If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.


A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.


If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.


Find the value of `sqrt(-3) xx sqrt(-6)`


Evaluate the following:

i35


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×