Advertisements
Advertisements
प्रश्न
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
उत्तर
`|z_1| = |z_2| = |z_3|` = 1
⇒ `|z_1|^2 = |z_2|^2 = |z_3|^2` = 1
⇒ `z_1 barz_1 = z_2 barz_2 = z_3 barz_3` = 1
⇒ `barz_1 = 1/barz_1, barz_2 = 1/barz_2, barz_3 = 1/z_3`
Given that `|1/z_1 + 1/z_2 + 1/z_3|` = 1
⇒ `|barz_1 + barz_2 + barz_3|` = 1, i.e., `|bar(z_1 + z_2 + z_3)|` = 1
⇒ |z1 + z2 + z3| = 1
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
What is the principal value of amplitude of 1 – i?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
If a + ib = c + id, then ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Show that `(-1 + sqrt3i)^3` is a real number.