Advertisements
Advertisements
प्रश्न
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
उत्तर
L.H.S. = `|1 - barz_1z_2|^2 - |z_1 - z_2|^2`
= `(1 - barz_1z_2) (bar(1 - barz_1 z_2)) - (z_1 - z_2) (bar(z_1 - z_2))`
= `(1 - barz_1 z_2) (1 - z_1 barz_2) - (z_1 - z_2)(barz_1 - barz_2)`
= `1 + z_1 barz_1 z_2barz_2 - z_1barz_1 - z_2barz_2`
= `1 + |z-1|^2 * |z_2|^2 - |z_1|^2 - |z_2|^2`
= `(1 - |z_1|^2)(1 - |z_2|^2)`
R.H.S. = `k(1 - |z_1|^2)(1 - |z_2|^2)`
⇒ k = 1
Hence, equating L.H.S. and R.H.S., we get k = 1.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
–i
If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
Is (1 + i14 + i18 + i22) a real number? Justify your answer
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
If a + ib = c + id, then ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`
Find the value of `sqrt(-3) xx sqrt(-6)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35