Advertisements
Advertisements
Question
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
Solution
L.H.S. = `|1 - barz_1z_2|^2 - |z_1 - z_2|^2`
= `(1 - barz_1z_2) (bar(1 - barz_1 z_2)) - (z_1 - z_2) (bar(z_1 - z_2))`
= `(1 - barz_1 z_2) (1 - z_1 barz_2) - (z_1 - z_2)(barz_1 - barz_2)`
= `1 + z_1 barz_1 z_2barz_2 - z_1barz_1 - z_2barz_2`
= `1 + |z-1|^2 * |z_2|^2 - |z_1|^2 - |z_2|^2`
= `(1 - |z_1|^2)(1 - |z_2|^2)`
R.H.S. = `k(1 - |z_1|^2)(1 - |z_2|^2)`
⇒ k = 1
Hence, equating L.H.S. and R.H.S., we get k = 1.
APPEARS IN
RELATED QUESTIONS
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Find the value of i + i2 + i3 + i4
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex number:
cosθ + i sinθ
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
1 + i2 + i4 + i6 + ... + i2n is ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
Which of the following is correct for any two complex numbers z1 and z2?
If a + ib = c + id, then ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Let `(-2 - 1/3i)^2 = (x + iy)/9 (i = sqrt(-1))`, where x and y are real numbers, then x – y equals to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`