Advertisements
Advertisements
Question
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Solution
x + iy = `sqrt(("a" + "ib")/("c" + "id")`
∴ (x + iy)2 = `("a" + "ib")/("c" + "id")`
∴ x2 + 2xyi + y2i2 = `("a" + "ib")/("c" + "id") xx ("c" - "id")/("c" - "id")`
∴ x2 + 2xyi – y2 = `("ac" - "adi" + "bci" - "bdi"^2)/("c"^2 - "d"^2"i"^2)` ...[∵ i2 = –1]
∴ (x2 – y2) + 2xyi = `("ac" - "adi" + "bci" + "bd")/("c"^2 + "d"^2)`
∴ (x2 – y2) + 2xyi =`(("ac" + "bd") + ("bc" - "ad")"i")/("c"^2 + "d"^2)`
∴ (x2 – y2) + 2xyi = `(("ac" + "bd")/("c"^2 + "d"^2)) + (("bc" - "ad")/("c"^2 + "d"^2))"i"`
Equating the real and imaginary parts separately, we get,
x2 – y2 = `("ac" + "bd")/("c"^2 + "d"^2)` and 2xy = `("bc" - "ad")/("c"^2 + "d"^2)`
∴ (x2 + y2)2 = (x2 – y2)2 + 4x2y2
= (x2 – y2)2 + (2xy)2
= `(("ac" + "bd")/("c"^2 + "d"^2))^2 + (("bc" - "ad")/("c"^2 + "d"^2))^2`
= `(("ac" + "bd")^2 + ("bc" - "ad")^2)/("c"^2 + "d"^2)^2`
= `("a"^2"c"^2 + 2"abcd" + "b"^2"d"^2 + "b"^2"c"^2 - 2"abcd" + "a"^2"d"^2)/("c"^2 + "d"^2)^2`
= `(("a"^2"c"^2 + "b"^2"c"^2) + ("a"^2"d"^2 + "b"^2"d"^2))/("c"^2 + "d"^2)^2`
= `(("a"^2 + "b"^2)"c"^2 + ("a"^2 + "b"^2)"d"^2)/("c"^2 + "d"^2)^2`
= `(("a"^2 + "b"^2)("c"^2 + "d"^2))/("c"^2 + "d"^2)^2`
∴ (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
APPEARS IN
RELATED QUESTIONS
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify the following and express in the form a + ib:
`(4 + 3"i")/(1 - "i")`
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Write the conjugates of the following complex number:
3 – i
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
Answer the following:
Evaluate: (1 − i + i2)−15
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
1 + i2 + i4 + i6 + ... + i2n is ______.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
Solve the equation |z| = z + 1 + 2i.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
Find `|(1 + i) ((2 + i))/((3 + i))|`.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
If `((1 + i)/(1 - i))^x` = 1, then ______.
Which of the following is correct for any two complex numbers z1 and z2?
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`
Evaluate the following:
i35