English

Select the correct answer from the given alternatives: If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is : - Mathematics and Statistics

Advertisements
Advertisements

Question

Select the correct answer from the given alternatives:

If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :

Options

  • −4i

  • 0

  • 4i

  • 4

MCQ

Solution

0

Explanation;

1 + (i2)n + (i4)n + (i2)3n

= 1 – 1 + 1 – 1   …(n odd positive interger)

= 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 1: Complex Numbers - Miscellaneous Exercise 1.1 [Page 21]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 1 Complex Numbers
Miscellaneous Exercise 1.1 | Q I. (1) | Page 21

RELATED QUESTIONS

Find the multiplicative inverse of the complex number:

4 – 3i


Express the following expression in the form of a + ib.

`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


Show that 1 + i10 + i20 + i30 is a real number.


Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Simplify the following and express in the form a + ib:

`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`


Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i


Write the conjugates of the following complex number:

`-sqrt(5) - sqrt(7)"i"`


If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0


If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1


If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)


Find the value of x and y which satisfy the following equation (x, y∈R).

(x + 2y) + (2x − 3y)i + 4i = 5


Find the value of x and y which satisfy the following equation (x, y ∈ R).

`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`


Answer the following:

Simplify the following and express in the form a + ib:

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Solve the following equation for x, y ∈ R:

2x + i9y (2 + i) = xi7 + 10i16


Answer the following:

Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0


If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is


The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______


If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)


If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.


State true or false for the following:

The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.


What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?


Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.


If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.


For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.


State True or False for the following:

Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.


State True or False for the following:

The inequality |z – 4| < |z – 2| represents the region given by x > 3.


If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.


Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.


Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Show that `(-1 + sqrt3 i)^3` is a real number.


Simplify the following and express in the form a + ib.

`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Show that `(-1 + sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×