English

If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = |1z1+1z2+1z3+...+1zn|. - Mathematics

Advertisements
Advertisements

Question

If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.

Sum

Solution

We have |z1| = |z2| = ... = |zn| = 1

⇒ |z1|2 = |z2|2 = ... = |zn|2 = 1  ......(i)

⇒ `z_1 barz_1 = z_2 barz_2 = ... = z_n barz_n` = 1  .....`[because zbarz = |z|^2]`

⇒ z1 = `1/barz_1, z_2 = 1/barz_2 = ... = z_n = 1/barz_n`

L.H.S. |z1 + z2 + z3 + ... + zn|

= `|(z_1barz_1)/barz_1 + (z_2barz_2)/barz_2 + (z_3barz_3)/barz_3 + ... + (z_nbarz_n)/barz_n|`

= `||z_1|^2/barz_1 + (|z_2|^2)/barz_2 + (|z_3|^2)/barz_3 + ... + (|z_n|^2)/barz_n|`  ......`[zbarz = |z|^2]`

= `|1/barz_1 + 1/barz_2 + 1/barz_3 + ... + 1/barz_n|`  ......[Using (i)]

= `|bar(1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n)|`  .....`[because barz_1 + barz_2 = bar(z_1 + z_2)]`

= `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`  ....`[because |z| = |barz|]`

L.H.S. = R.H.S.

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Complex Numbers and Quadratic Equations - Exercise [Page 92]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 11
Chapter 5 Complex Numbers and Quadratic Equations
Exercise | Q 19 | Page 92

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the multiplicative inverse of the complex number.

–i 


If α and β are different complex numbers with |β| = 1, then find `|(beta - alpha)/(1-baralphabeta)|`


Find the number of non-zero integral solutions of the equation `|1-i|^x  = 2^x`.


If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.


Find the value of: x3 –  x2 + x + 46, if x = 2 + 3i


Simplify the following and express in the form a + ib:

`5/2"i"(- 4 - 3 "i")`


Simplify the following and express in the form a + ib:

(1 + 3i)2 (3 + i)


Simplify the following and express in the form a + ib:

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Find the value of i + i2 + i3 + i4 


Show that 1 + i10 + i100 − i1000 = 0 


Answer the following:

Simplify the following and express in the form a + ib:

(1 + 3i)2(3 + i)


Answer the following:

Solve the following equations for x, y ∈ R:

(x + iy) (5 + 6i) = 2 + 3i


Solve the following equation for x, y ∈ R:

2x + i9y (2 + i) = xi7 + 10i16


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`


State true or false for the following:

The complex number cosθ + isinθ can be zero for some θ.


State true or false for the following:

If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.


What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?


What is the reciprocal of `3 + sqrt(7)i`.


The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.


The value of `sqrt(-25) xx sqrt(-9)` is ______.


The number `(1 - i)^3/(1 - i^2)` is equal to ______.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.


If a + ib = c + id, then ______.


If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.


If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`


Show that `(-1 + sqrt3i)^3` is a real number.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×