Advertisements
Advertisements
प्रश्न
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
उत्तर
We have |z1| = |z2| = ... = |zn| = 1
⇒ |z1|2 = |z2|2 = ... = |zn|2 = 1 ......(i)
⇒ `z_1 barz_1 = z_2 barz_2 = ... = z_n barz_n` = 1 .....`[because zbarz = |z|^2]`
⇒ z1 = `1/barz_1, z_2 = 1/barz_2 = ... = z_n = 1/barz_n`
L.H.S. |z1 + z2 + z3 + ... + zn|
= `|(z_1barz_1)/barz_1 + (z_2barz_2)/barz_2 + (z_3barz_3)/barz_3 + ... + (z_nbarz_n)/barz_n|`
= `||z_1|^2/barz_1 + (|z_2|^2)/barz_2 + (|z_3|^2)/barz_3 + ... + (|z_n|^2)/barz_n|` ......`[zbarz = |z|^2]`
= `|1/barz_1 + 1/barz_2 + 1/barz_3 + ... + 1/barz_n|` ......[Using (i)]
= `|bar(1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n)|` .....`[because barz_1 + barz_2 = bar(z_1 + z_2)]`
= `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|` ....`[because |z| = |barz|]`
L.H.S. = R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
5i
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
Evaluate: (1 + i)6 + (1 – i)3
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`