मराठी

If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = |1z1+1z2+1z3+...+1zn|. - Mathematics

Advertisements
Advertisements

प्रश्न

If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.

बेरीज

उत्तर

We have |z1| = |z2| = ... = |zn| = 1

⇒ |z1|2 = |z2|2 = ... = |zn|2 = 1  ......(i)

⇒ `z_1 barz_1 = z_2 barz_2 = ... = z_n barz_n` = 1  .....`[because zbarz = |z|^2]`

⇒ z1 = `1/barz_1, z_2 = 1/barz_2 = ... = z_n = 1/barz_n`

L.H.S. |z1 + z2 + z3 + ... + zn|

= `|(z_1barz_1)/barz_1 + (z_2barz_2)/barz_2 + (z_3barz_3)/barz_3 + ... + (z_nbarz_n)/barz_n|`

= `||z_1|^2/barz_1 + (|z_2|^2)/barz_2 + (|z_3|^2)/barz_3 + ... + (|z_n|^2)/barz_n|`  ......`[zbarz = |z|^2]`

= `|1/barz_1 + 1/barz_2 + 1/barz_3 + ... + 1/barz_n|`  ......[Using (i)]

= `|bar(1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n)|`  .....`[because barz_1 + barz_2 = bar(z_1 + z_2)]`

= `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`  ....`[because |z| = |barz|]`

L.H.S. = R.H.S.

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 19 | पृष्ठ ९२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Simplify the following and express in the form a + ib:

(2 + 3i)(1 – 4i)


Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Write the conjugates of the following complex number:

3 + i


Write the conjugates of the following complex number:

5i


Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`


If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0


If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)` 


Find the value of x and y which satisfy the following equation (x, y∈R).

`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i


Select the correct answer from the given alternatives:

`sqrt(-3) sqrt(-6)` is equal to


Answer the following:

Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Answer the following:

Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number


Evaluate: (1 + i)6 + (1 – i)3 


The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?


The equation |z + 1 – i| = |z – 1 + i| represents a ______.


For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`


If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


Let x, y ∈ R, then x + iy is a non-real complex number if ______.


If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.


Simplify the following and express in the form a+ib.

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×