मराठी

The sum of the series i + i2 + i3 + ... upto 1000 terms is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.

रिकाम्या जागा भरा

उत्तर

The sum of the series i + i2 + i3 + ... upto 1000 terms is 0.

Explanation:

i + i2 + i3 + ... upto 1000 terms

= i + i2 + i3 + ... + i1000

= 0

`[sum_(n = 1)^1000 i^n = 0]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Exercise | Q 25.(iv) | पृष्ठ ९३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the multiplicative inverse of the complex number.

–i 


Express the following expression in the form of a + ib.

`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`


Find the value of i + i2 + i3 + i4 


Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.


Write the conjugates of the following complex number:

`sqrt(2) + sqrt(3)"i"`


Is (1 + i14 + i18 + i22) a real number? Justify your answer


If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)


Select the correct answer from the given alternatives:

`sqrt(-3) sqrt(-6)` is equal to


Answer the following:

Simplify the following and express in the form a + ib:

`(4 + 3"i")/(1 - "i")`


Answer the following:

Solve the following equation for x, y ∈ R:

(4 − 5i)x + (2 + 3i)y = 10 − 7i


Solve the following equation for x, y ∈ R:

2x + i9y (2 + i) = xi7 + 10i16


Answer the following:

Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`


Answer the following:

Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0


Answer the following:

show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2


If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is


The value of (2 + i)3 × (2 – i)3 is ______.


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?


If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.


If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.


If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×