Advertisements
Advertisements
प्रश्न
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
उत्तर
`(1/sqrt(2) + "i"/sqrt(2))^2 = 1/2 + 2(1/sqrt(2)) ("i"/sqrt(2)) + "i"^2/2`
= `1/2 + "i" - 1/2` = i
∴ `(1/sqrt(2) + "i"/sqrt(2))^10 = [(1/sqrt(2) + "i"/sqrt(2))^2]^5`
= i5 = i4.i = i ...(i)
Also, `(1/sqrt(2) - "i"/sqrt(2))^2 = 1/2 - 2(1/sqrt(2)) ("i"/sqrt(2)) + "i"^2/2`
= `1/2 - "i" - 1/2` = – i
∴ `(1/sqrt(2) - "i"/sqrt(2))^10 = [(1/sqrt(2) - "i"/sqrt(2))^2]^5` = (– i)5
= i4(– i) = – i ...(ii)
Adding (i) and (ii), we get
`(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = i – i = 0
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
–i
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Simplify the following and express in the form a + ib:
(2i3)2
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Find the value of : x3 + 2x2 – 3x + 21, if x = 1 + 2i
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Evaluate: i131 + i49
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Simplify: `("i"^65 + 1/"i"^145)`
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
The value of (2 + i)3 × (2 – i)3 is ______.
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
1 + i2 + i4 + i6 + ... + i2n is ______.
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
Multiplicative inverse of 1 + i is ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
If `((1 + i)/(1 - i))^x` = 1, then ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`