Advertisements
Advertisements
प्रश्न
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
उत्तर
a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2`
∴ a2 = `((-1 + sqrt(3)"i")/2)^2 = (1 - 2sqrt(3)"i" + 3"i"^2)/4`
= `(1 - 2sqrt(3)"i" + 3(-1))/4` ...[∵ i2 = – 1]
= `(-2 - 2sqrt(3)"i")/4`
= `(-1 - sqrt(3)"i")/2` = b
and b2 = `((-1 - sqrt(3)"i")/2)^2 = (1 + 2sqrt(3)"i" + 3"i"^2)/4`
= `(1 + 2sqrt(3)"i" + 3(-1))/4` . ...[∵ i2 = – 1]
= `(-2 + 2sqrt(3)"i")/4`
= `(-1 + sqrt(3)"i")/2` = a
APPEARS IN
संबंधित प्रश्न
Reduce `(1/(1-4i) - 2/(1+i))((3-4i)/(5+i))` to the standard form.
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
Simplify the following and express in the form a + ib:
(2i3)2
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
`-sqrt(5) - sqrt(7)"i"`
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
The value of (2 + i)3 × (2 – i)3 is ______.
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
Locate the points for which 3 < |z| < 4.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
What is the reciprocal of `3 + sqrt(7)i`.
1 + i2 + i4 + i6 + ... + i2n is ______.
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
The complex number z which satisfies the condition `|(i + z)/(i - z)|` = 1 lies on ______.
If z is a complex number, then ______.
`((1 + cosθ + isinθ)/(1 + cosθ - isinθ))^n` = ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`