Advertisements
Advertisements
प्रश्न
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
उत्तर
n = 2, Because (1 + i)2n = (1 – i)2n ⇒ `((1 + i)/(1 - i))^(2n)` = 1
⇒ (i)2n = 1 Which is possible if n = 2 ......(∴ i4 = 1)
APPEARS IN
संबंधित प्रश्न
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Find the value of i + i2 + i3 + i4
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Show that 1 + i10 + i100 − i1000 = 0
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
Evaluate: (1 + i)6 + (1 – i)3
What is the reciprocal of `3 + sqrt(7)i`.
What is the principal value of amplitude of 1 – i?
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
State True or False for the following:
For any complex number z the minimum value of |z| + |z – 1| is 1.
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
State True or False for the following:
The inequality |z – 4| < |z – 2| represents the region given by x > 3.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.
If a + ib = c + id, then ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Find the value of `sqrt(-3) xx sqrt(-6)`