Advertisements
Advertisements
प्रश्न
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
पर्याय
True
False
उत्तर
This statement is True.
Explanation:
Let z = x + yi
Given that: |z – 1| = |z – i|
Then |z + yi – 1| = |x + yi – i|
⇒ `|(x - 1) + yi| = |x - (1 - y)i|`
⇒ `sqrt((x - 1)^2 + y^2) = sqrt(x^2 + (1 - y^2))`
⇒ (x – 1)2 + y2 = x2 + (1 – y)2
⇒ x2 – 2x + 1 + y2 = x2 + 1 + y2 – 2y
⇒ –2x + 2y = 0
⇒ x – y = 0
Which is a straight line.
Slope = 1
Now equation of a line through the point (1, 0) and (0, 1).
y – 0 = `(1 - 0)/(0 - 1) (x - 1)`
⇒ y = –x + 1 whose slope = –1.
Now the multiplication of the slopes of two lines = –1 × 1 = –1
So they are perpendicular.
APPEARS IN
संबंधित प्रश्न
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
Find the number of non-zero integral solutions of the equation `|1-i|^x = 2^x`.
Find the value of i49 + i68 + i89 + i110
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
Show that 1 + i10 + i100 − i1000 = 0
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Evaluate: `("i"^37 + 1/"i"^67)`
Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Evaluate: i131 + i49
The value of (2 + i)3 × (2 – i)3 is ______.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
Solve the equation |z| = z + 1 + 2i.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If z is a complex number, then ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
Let z be a complex number such that `|(z - i)/(z + 2i)|` = 1 and |z| = `5/2`. Then the value of |z + 3i| is ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`