Advertisements
Advertisements
प्रश्न
State True or False for the following:
The locus represented by |z – 1| = |z – i| is a line perpendicular to the join of (1, 0) and (0, 1).
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
Let z = x + yi
Given that: |z – 1| = |z – i|
Then |z + yi – 1| = |x + yi – i|
⇒ `|(x - 1) + yi| = |x - (1 - y)i|`
⇒ `sqrt((x - 1)^2 + y^2) = sqrt(x^2 + (1 - y^2))`
⇒ (x – 1)2 + y2 = x2 + (1 – y)2
⇒ x2 – 2x + 1 + y2 = x2 + 1 + y2 – 2y
⇒ –2x + 2y = 0
⇒ x – y = 0
Which is a straight line.
Slope = 1
Now equation of a line through the point (1, 0) and (0, 1).
y – 0 = `(1 - 0)/(0 - 1) (x - 1)`
⇒ y = –x + 1 whose slope = –1.
Now the multiplication of the slopes of two lines = –1 × 1 = –1
So they are perpendicular.
APPEARS IN
संबंधित प्रश्न
Find the value of i49 + i68 + i89 + i110
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Find the value of i + i2 + i3 + i4
Evaluate : `("i"^37 + 1/"i"^67)`
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Simplify the following and express in the form a + ib:
(2 + 3i)(1 − 4i)
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Show that `(-1 + sqrt3i)^3` is a real number.