Advertisements
Advertisements
प्रश्न
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
उत्तर
x = `25/(3 - 4"i")`
∴ x = `(25(3 + 4"i"))/((3 - 4"i")(3 + 4"i")`
= `(25(3 + 4"i"))/(9 - 16"i"^2)`
= `(25(3 + 4"i"))/(9 - 16(-1))` ...[∵ i2 = – 1]
= `(25(3 + 4"i"))/25`
∴ x = 3 + 4
∴ x – 3 = 4i
∴ (x – 3)2 = 16i2
∴ x2 – 6x + 9 = 16(– 1) ...[∵ i2 = – 1]
∴ x2 – 6x + 25 = 0
2x + 1
`x^2 – 6x + 25")"overline(2x^3 - 11x^2 + 44x + 27)"`
2x3 – 12x2 + 50x
– + –
x2 – 6x + 27
x2 – 6x + 25
– + –
2
∴ 2x3 – 11x2 + 44x + 27
= (x2 – 6x + 25) (2x + 1) + 2
= 0.(2x + 1) + 2 ...[From (i)]
= 0 + 2
= 2
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
–i
Express the following expression in the form of a + ib.
`((3 + sqrt5)(3 - isqrt5))/((sqrt3 + sqrt2i)-(sqrt3 - isqrt2))`
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
Write the conjugates of the following complex number:
`-sqrt(-5)`
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
State true or false for the following:
If n is a positive integer, then the value of in + (i)n+1 + (i)n+2 + (i)n+3 is 0.
1 + i2 + i4 + i6 + ... + i2n is ______.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a + ib.
`(3i^5+2i^7+i^9)/(i^6+2i^8+3i^18)`