Advertisements
Advertisements
प्रश्न
If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.
उत्तर
(a + ib) (c + id) (e + if)(g + ih) = A + iB ......(1)
By placing i in place of i,
(a – ib) (c – id) (e – if)(g – ih) = A – iB ......(2)
On multiplying equations (1) and (2),
[(a + ib) (a – ib)] [(c + id) (c – id)] [(e + if)(e – if)][(g + ih)(g – ih)] = (A + iB)(A – iB)
⇒ `(a^2 - i^2b^2)(c^2 - i^2d^2)(e^2 - i^2 f^2)(g^2 - i^2h^2) = A^2 - i^2B^2`
⇒ `(a^2 + b^2)(c^2 + d^2) (e^2 + f^2) (g^2 + h^2) = A^2 + B^2`
APPEARS IN
संबंधित प्रश्न
Simplify the following and express in the form a + ib:
(2i3)2
Simplify the following and express in the form a + ib:
`5/2"i"(- 4 - 3 "i")`
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Is (1 + i14 + i18 + i22) a real number? Justify your answer
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
The value of (2 + i)3 × (2 – i)3 is ______.
Evaluate: (1 + i)6 + (1 – i)3
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
The complex number cosθ + isinθ can be zero for some θ.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
The equation |z + 1 – i| = |z – 1 + i| represents a ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
Solve the equation |z| = z + 1 + 2i.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
If |z + 4| ≤ 3, then the greatest and least values of |z + 1| are ______ and ______.
If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`