Advertisements
Advertisements
प्रश्न
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
विकल्प
−4i
0
4i
4
उत्तर
0
Explanation;
1 + (i2)n + (i4)n + (i2)3n
= 1 – 1 + 1 – 1 …(n odd positive interger)
= 0
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
Show that 1 + i10 + i20 + i30 is a real number.
Simplify the following and express in the form a + ib:
(2i3)2
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
5i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Write the conjugates of the following complex number:
cosθ + i sinθ
Is (1 + i14 + i18 + i22) a real number? Justify your answer
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Answer the following:
Simplify the following and express in the form a + ib:
`3 + sqrt(-64)`
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
The value of (2 + i)3 × (2 – i)3 is ______.
Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
What is the reciprocal of `3 + sqrt(7)i`.
1 + i2 + i4 + i6 + ... + i2n is ______.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3i)^3` is a real number.