Advertisements
Advertisements
प्रश्न
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
उत्तर
Let z1 = x + yi
|z1| = `sqrt(x^2 + y^2)` = 1 ......[Given that |z1| = 1]
⇒ x2 + y2 = 1 ......(i)
Now z2 = `(z_1 - 1)/(z_1 + 1)`
= `(x + yi - 1)/(x + yi + 1)`
= `((x + 1) + y"i")/((x + 1) + y"i")`
= `((x - 1) + yi)/((x + 1) + yi) xx (x + 1 - yi)/(x + 1 - yi)`
= `((x - 1)(x + 1) - y(x - 1)i + y(x + 1)i - y^2i^2)/((x + 1)^2 - y^2i^2)`
= `(x^2 - 1 + yi(x + 1 - x + 1) + y^2)/(x^2 + 1 + 2x + y^2)`
= `((x^2 + y^2 - 1) + 2yi)/(x^2 + y^2 + 2x + 1)`
= `((1 - 1))/(x^2 + y^2 + 2x + 1) + (2y)/(x^2 + y^2 + 2x + 1) "i"`
= `0 + (2y)/(x^2 + y^2 + 2x + 1) "i"`
Hence, the real part of z2 is 0.
APPEARS IN
संबंधित प्रश्न
Find the value of i + i2 + i3 + i4
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Simplify the following and express in the form a + ib:
`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`
Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.
Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Select the correct answer from the given alternatives:
`sqrt(-3) sqrt(-6)` is equal to
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
If a + ib = c + id, then ______.
If α and β are the roots of the equation x2 + 2x + 4 = 0, then `1/α^3 + 1/β^3` is equal to ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 +2i^7 +i^9)/(i^6 +2i^8 +3i^18)`