हिंदी

If (1 + i)z = (1-i)z¯, then show that z = -iz¯. - Mathematics

Advertisements
Advertisements

प्रश्न

If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.

योग

उत्तर

Given that: (1 + i)z = `(1 - i)barz`

⇒ `z/barz = (1 - i)/(1 + i)` = `(1 - i)/(1 + i) xx (1 - i)/(1 - i)`

= `(1 + i^2 - 2i)/(1 - i^2)` = `(1 - 1 - 2i)/(1 + 1)`

= `(-2i)/2` = –i

⇒ `z/barz` = –i

∴ z = `-i barz`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Complex Numbers and Quadratic Equations - Exercise [पृष्ठ ९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 11
अध्याय 5 Complex Numbers and Quadratic Equations
Exercise | Q 7 | पृष्ठ ९१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the number of non-zero integral solutions of the equation `|1-i|^x  = 2^x`.


Find the value of: x3 –  x2 + x + 46, if x = 2 + 3i


Simplify the following and express in the form a + ib: 

(2i3)2 


Simplify the following and express in the form a + ib:

(1 + 3i)2 (3 + i)


Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Simplify the following and express in the form a + ib:

`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`


Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Find the value of: x3 – 5x2 + 4x + 8, if x = `10/(3 - "i")`.


Find the value of: x3 – 3x2 + 19x – 20, if x = 1 – 4i


Write the conjugates of the following complex number:

3 – i


If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a


Find the value of x and y which satisfy the following equation (x, y∈R).

If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y


Answer the following:

Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Answer the following:

Evaluate: i131 + i49 


Answer the following:

Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i


Answer the following:

Simplify `[1/(1 - 2"i") + 3/(1 + "i")] [(3 + 4"i")/(2 - 4"i")]`


Find the value of k if for the complex numbers z1 and z2, `|1 - barz_1z_2|^2 - |z_1 - z_2|^2 = k(1 - |z_1|^2)(1 - |"z"_2|^2)`


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.


The equation |z + 1 – i| = |z – 1 + i| represents a ______.


For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`


The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.


Multiplicative inverse of 1 + i is ______.


State True or False for the following:

For any complex number z the minimum value of |z| + |z – 1| is 1.


Find `|(1 + i) ((2 + i))/((3 + i))|`.


The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.


Which of the following is correct for any two complex numbers z1 and z2?


If the least and the largest real values of α, for which the equation z + α|z – 1| + 2i = 0 `("z" ∈ "C" and "i" = sqrt(-1))` has a solution, are p and q respectively; then 4(p2 + q2) is equal to ______.


Show that `(-1 + sqrt3 i)^3` is a real number.


Simplify the following and express in the form a+ib:

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×