Advertisements
Advertisements
प्रश्न
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
उत्तर
Given that: (1 + i)z = `(1 - i)barz`
⇒ `z/barz = (1 - i)/(1 + i)` = `(1 - i)/(1 + i) xx (1 - i)/(1 - i)`
= `(1 + i^2 - 2i)/(1 - i^2)` = `(1 - 1 - 2i)/(1 + 1)`
= `(-2i)/2` = –i
⇒ `z/barz` = –i
∴ z = `-i barz`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number:
4 – 3i
Find the value of i + i2 + i3 + i4
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Write the conjugates of the following complex number:
`sqrt(2) + sqrt(3)"i"`
Is (1 + i14 + i18 + i22) a real number? Justify your answer
If x + iy = (a + ib)3, show that `x/"a" + y/"b"` = 4(a2 − b2)
If x + iy = `sqrt(("a" + "ib")/("c" + "id")`, prove that (x2 + y2)2 = `("a"^2 + "b"^2)/("c"^2 + "d"^2)`
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
(1 + 3i)2(3 + i)
Answer the following:
Solve the following equation for x, y ∈ R:
(4 − 5i)x + (2 + 3i)y = 10 − 7i
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
If z1 = 5 + 3i and z2 = 2 - 4i, then z1 + z2 = ______.
If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)
State true or false for the following:
Multiplication of a non-zero complex number by i rotates it through a right angle in the anti-clockwise direction.
State true or false for the following:
The argument of the complex number z = `(1 + i sqrt(3))(1 + i)(cos theta + i sin theta)` is `(7pi)/12 + theta`.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
State True or False for the following:
Multiplication of a non-zero complex number by –i rotates the point about origin through a right angle in the anti-clockwise direction.
If `((1 + i)/(1 - i))^x` = 1, then ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.