Advertisements
Advertisements
प्रश्न
If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.
उत्तर
Let z = x + iy
∴ `barz` = x – iy
So`(barz + 2)/(barz - 1) = (x - iy + 2)/(x - iy - 1)`
= `((x + 2) - iy)/((x - 1) - iy)`
= `((x + 2) - iy)/((x - 1) - iy) xx ((x - 1) + iy)/((x - 1) + iy)`
= `((x + 2)(x - 1) + (x + 2)yi - (x - 1)yi - i^2y^2)/((x - 1)^2 - i^2y^2)`
= `(x^2 + 2x - x - 2 + (x + 2 - x + 1)yi + y^2)/((x - 1)^2 + y^2)`
= `(x^2 + y^2 + x - 2)/((x - 1)^2 + y^2) + (3y)/((x - 1)^2 + y^2)i`
Real part = 4
∴ `(x^2 + y^2 + x - 2)/((x - 1)^2 + y^2)` = 4
⇒ x2 + y2 + x – 2 = 4[(x – 1)2 + y2]
⇒ x2 + y2 + x – 2 = 4[x2 + 1 – 2x + y2]
⇒ x2 + y2 + x – 2 = 4x2 + 4 – 8x + 4y2
⇒ x2 – 4x2 + y2 – 4y2 + x + 8x – 2 – 4 = 0
⇒ – 3x2 – 3y2 + 9x – 6 = 0
⇒ x2 + y2 – 3x + 2 = 0
Which represents a circle.
Hence, z lies on a circle.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Find the multiplicative inverse of the complex number.
–i
Find the value of i + i2 + i3 + i4
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Find the value of i + i2 + i3 + i4
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
Find the value of x and y which satisfy the following equation (x, y ∈ R).
`((x + "i"y))/(2 + 3"i") + (2 + "i")/(2 - 3"i") = 9/13(1 + "i")`
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Answer the following:
Simplify the following and express in the form a + ib:
(2i3)2
Answer the following:
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Answer the following:
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
Answer the following:
Simplify: `("i"^29 + "i"^39 + "i"^49)/("i"^30 + "i"^40 + "i"^50)`
If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.
Evaluate: (1 + i)6 + (1 – i)3
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
Find `|(1 + i) ((2 + i))/((3 + i))|`.
The real value of α for which the expression `(1 - i sin alpha)/(1 + 2i sin alpha)` is purely real is ______.
If `((1 + i)/(1 - i))^x` = 1, then ______.
If a + ib = c + id, then ______.
The complex number z = x + iy which satisfy the equation `|(z - 5i)/(z + 5i)|` = 1, lie on ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`
Find the value of `sqrt(-3) xx sqrt(-6)`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`