Advertisements
Advertisements
प्रश्न
If `((1 + i)/(1 - i))^x` = 1, then ______.
पर्याय
x = 2n + 1
x = 4n
x = 2n
x = 4n + 1, where n ∈ N
उत्तर
If `((1 + i)/(1 - i))^x` = 1, then x = 4n.
Explanation:
Given that: `((1 + i)/(1 - i))^x` = 1
⇒ `(((1 + i)(1 + i))/((1 - i)(1 - i)))^x` = 1
⇒ `((1 + i^2 + 2i)/(1 - i^2))^x` = 1
⇒ `((1 - 1 + 2i)/(1 + 1))^x` = 1
⇒ `((2i)/2)^x` = 1
⇒ (i)x = (i)4n
⇒ x = 4n, n ∈ N
APPEARS IN
संबंधित प्रश्न
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Find the value of: 2x3 – 11x2 + 44x + 27, if x = `25/(3 - 4"i")`
Simplify the following and express in the form a + ib:
`(sqrt(5) + sqrt(3)"i")/(sqrt(5) - sqrt(3)"i")`
Write the conjugates of the following complex number:
`sqrt(5) - "i"`
Find the value of i + i2 + i3 + i4
Is (1 + i14 + i18 + i22) a real number? Justify your answer
Prove that `(1 + "i")^4 xx (1 + 1/"i")^4` = 16
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Solve the following equation for x, y ∈ R:
2x + i9y (2 + i) = xi7 + 10i16
Answer the following:
Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i
Answer the following:
Show that `(1 - 2"i")/(3 - 4"i") + (1 + 2"i")/(3 + 4"i")` is real
Answer the following:
Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
Locate the points for which 3 < |z| < 4.
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
Number of solutions of the equation z2 + |z|2 = 0 is ______.
For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`