मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Solve the following equation for x, y ∈ R: 2x + i9y (2 + i) = xi7 + 10i16 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x, y ∈ R:

2x + i9y (2 + i) = xi7 + 10i16

बेरीज

उत्तर

2x + i9y (2 + i) = xi7 +10i16 

i9 = i8 x i = (i2)4i = (– 1)4i = i

i7 = i6 x i = (i2)3i = (–1)3i = – i

i16 = (i2)8 = (– 1)8 = 1

∴ given equation becomes

2x + iy(2 + i) = – xi + 10

∴ 2x + 2iy + i2y = – xi + 10

∴ 2x + 2iy – y = – xi + 10  ...[∵ i2 = – 1]

∴ 2x + 2iy – y + xi – 10 = 0

∴ (2x – y – 10) + (x + 2y)i = 0

∴ (2x – y) + (x + 2y)i = 10 + 0i

Equating the real and imaginary parts separately, we get,

2x – y = 10        ...(1)

and x + 2y = 0      ...(2)

Multiplying equation (1) by 2, we get, 4x – 2y = 20

Adding this equation with equation (2), we get,

5x = 20

∴ x = 4

∴ from (2), 4 + 2y = 0

∴ 2y = – 4

∴ y = – 2

Hence, x = 4, y = – 2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Complex Numbers - Miscellaneous Exercise 1.2 [पृष्ठ २२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 1 Complex Numbers
Miscellaneous Exercise 1.2 | Q II. (2) (iv) | पृष्ठ २२

संबंधित प्रश्‍न

If (a + ib) (c + id) (e + if) (g + ih) = A + iB, then show that (a2 + b2) (c2 + d2) (e2 + f2) (g2 + h2) = A2 + B2.


Show that 1 + i10 + i20 + i30 is a real number.


Find the value of i + i2 + i3 + i4 


Write the conjugates of the following complex number:

`sqrt(2) + sqrt(3)"i"`


Find the value of i49 + i68 + i89 + i110 


Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`


If (a + ib) = `(1 + "i")/(1 - "i")`, then prove that (a2 + b2) = 1


Find the value of x and y which satisfy the following equation (x, y∈R).

(x + 2y) + (2x − 3y)i + 4i = 5


Answer the following:

Simplify the following and express in the form a + ib:

(1 + 3i)2(3 + i)


Answer the following:

Simplify the following and express in the form a + ib:

`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`


Answer the following:

Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Answer the following:

Solve the following equation for x, y ∈ R:

(4 − 5i)x + (2 + 3i)y = 10 − 7i


Answer the following:

Find the value of x3 + 2x2 − 3x + 21, if x = 1 + 2i


Answer the following:

Find the value of x4 + 9x3 + 35x2 − x + 164, if x = −5 + 4i


Answer the following:

Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number


Answer the following:

Simplify: `("i"^238 + "i"^236 + "i"^234 + "i"^232 + "i"^230)/("i"^228 + "i"^226 + "i"^224 + "i"^222 + "i"^220)`


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


If `(x + iy)^(1/3)` = a + ib, where x, y, a, b ∈ R, show that `x/a - y/b` = –2(a2 + b2)


What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?


What is the reciprocal of `3 + sqrt(7)i`.


The equation |z + 1 – i| = |z – 1 + i| represents a ______.


Number of solutions of the equation z2 + |z|2 = 0 is ______.


If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


If the real part of `(barz + 2)/(barz - 1)` is 4, then show that the locus of the point representing z in the complex plane is a circle.


Solve the equation |z| = z + 1 + 2i.


If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.


For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.


The number `(1 - i)^3/(1 - i^2)` is equal to ______.


If `((1 + i)/(1 - i))^x` = 1, then ______.


A real value of x satisfies the equation `((3 - 4ix)/(3 + 4ix))` = α − iβ (α, β ∈ R) if α2 + β2 = ______.


Which of the following is correct for any two complex numbers z1 and z2?


The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.


Let |z| = |z – 3| = |z – 4i|, then the value |2z| is ______.


If `(3 + i)(z + barz) - (2 + i)(z - barz) + 14i` = 0, then `barzz` is equal to ______.


A complex number z is moving on `arg((z - 1)/(z + 1)) = π/2`. If the probability that `arg((z^3 -1)/(z^3 + 1)) = π/2` is `m/n`, where m, n ∈ prime, then (m + n) is equal to ______.


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Find the value of `sqrt(-3) xx sqrt(-6)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×