Advertisements
Advertisements
प्रश्न
Solve the equation |z| = z + 1 + 2i.
उत्तर
Given that: |z| = z + 1 + 2i
Let z = x + iy
|z| = (z + 1) + 2i
Squaring both sides
|z|2 = |z + 1|2 + 4i2 + 4(z + 1)i
⇒ |z|2 = |z|2 + 1 + 2z – 4 + 4(z + 1)i
⇒ 0 = –3 + 2z + 4(z + 1)i
⇒ 3 – 2z – 4(z + 1)i = 0
⇒ 3 – 2(x + yi) – 4[x + yi + 1]i = 0
⇒ 3 – 2x – 2yi – 4xi – 4yi2 – 4i = 0
⇒ 3 – 2x + 4y – 2yi – 4i – 4xi = 0
⇒ (3 – 2x + 4y) – i(2y + 4x + 4) = 0
⇒ 3 – 2x + 4y = 0
⇒ 2x – 4y = 3 .....(i)
And 4x + 2y + 4 = 0
⇒ 2x + y = –2 .....(ii)
Solving equation (i) and (ii), we get
y = –1 and x = `-1/2`
Hence, the value of z = x + yi = `(- 1/2 - i)`.
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
Find the value of i49 + i68 + i89 + i110
Find the value of: x3 – x2 + x + 46, if x = 2 + 3i
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Write the conjugates of the following complex number:
5i
Evaluate: `("i"^37 + 1/"i"^67)`
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Find the value of x and y which satisfy the following equation (x, y∈R).
If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y
Answer the following:
Simplify the following and express in the form a + ib:
`5/2"i"(-4 - 3"i")`
Answer the following:
show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2
Answer the following:
If x + iy = `("a" + "ib")/("a" - "ib")`, prove that x2 + y2 = 1
If |z1| = 1, |z2| = 2, |z3| = 3 and |9z1z2 + 4z1z3 + z2z3| = 12, then the value of |z1 + z2 + z3| is
The value of (2 + i)3 × (2 – i)3 is ______.
Evaluate: (1 + i)6 + (1 – i)3
If z1, z2, z3 are complex numbers such that `|z_1| = |z_2| = |z_3| = |1/z_1 + 1/z_2 + 1/z_3|` = 1, then find the value of |z1 + z2 + z3|.
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
What is the smallest positive integer n, for which (1 + i)2n = (1 – i)2n?
If `(1 + i)^2/(2 - i)` = x + iy, then find the value of x + y.
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
The value of `sqrt(-25) xx sqrt(-9)` is ______.
The sum of the series i + i2 + i3 + ... upto 1000 terms is ______.
The value of `(z + 3)(barz + 3)` is equivalent to ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`