Advertisements
Advertisements
प्रश्न
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
उत्तर
(1 + 3i)2 (3 + i)
= (1 + 6i + 9i2)(3 + i)
= (1 + 6i – 9)(3 + i) ...[∵ i2 = – 1]
= (– 8 + 6i)(3 + i)
= – 24 – 8i + 18i + 6i2
= – 24 + 10i +6(– 1)
= –24 + 10i – 6
= – 30 + 10i
APPEARS IN
संबंधित प्रश्न
If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`
Write the conjugates of the following complex number:
3 – i
Write the conjugates of the following complex number:
cosθ + i sinθ
If `("a" + 3"i")/(2+ "ib")` = 1 − i, show that (5a − 7b) = 0
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
What is the principal value of amplitude of 1 – i?
If the complex number z = x + iy satisfies the condition |z + 1| = 1, then z lies on ______.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
Solve the equation |z| = z + 1 + 2i.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.
For any two complex numbers z1, z2 and any real numbers a, b, |az1 – bz2|2 + |bz1 + az2|2 = ______.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
If `|(6i, -3i, 1),(4, 3i, -1),(20, 3, i)|` = x + iy, then ______.
Find the value of `(i^592 + i^590 + i^588 + i^586 + i^584)/ (i^582 + i^580 + i^578 + i^576 + i^574)`
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a+ib:
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`