Advertisements
Advertisements
प्रश्न
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
उत्तर
We have `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy
⇒ `[(1 + i)/(1 - i) xx (1 + i)/(1 + i)]^3 - [((1 - i)(1 - i))/((1 + i)(1 - i))]^3` = x + iy
⇒ `[(1 + i^2 + 2i)/(1 - i^2)]^3 - [(1 + i^2 - 2i)/(1 - i^2)]^3` = x + iy
⇒ `[(1 - 1 + 2i)/(1 + 1)]^3 - [(1 - 1 - 2i)/(1 + 1)]^3` = x + iy
⇒ `((2i)/2)^3 - ((-2i)/2)^3` = x + iy
⇒ (i)3 – (–i)3 = x + iy
⇒ i2.i + i2.i = x + iy
⇒ –i – i = x + iy
⇒ 0 – 2i = x + iy
Comparing the real and imaginary parts,
We get x = 0, y = –2
Hence, (x, y) = (0, –2).
APPEARS IN
संबंधित प्रश्न
Find the value of i + i2 + i3 + i4
Simplify the following and express in the form a + ib:
(2 + 3i)(1 – 4i)
Simplify the following and express in the form a + ib:
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Write the conjugates of the following complex number:
3 + i
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
If a = `(-1 + sqrt(3)"i")/2`, b = `(-1 - sqrt(3)"i")/2` then show that a2 = b and b2 = a
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
If x + 2i + 15i6y = 7x + i3 (y + 4), find x + y
Select the correct answer from the given alternatives:
If n is an odd positive integer then the value of 1 + (i)2n + (i)4n + (i)6n is :
Select the correct answer from the given alternatives:
The value of is `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)` is equal to:
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Find the real numbers x and y such that `x/(1 + 2"i") + y/(3 + 2"i") = (5 + 6"i")/(-1 + 8"i")`
The argument of the complex number `(4 + 9i)/(13 + 5i)` is ______
The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.
State true or false for the following:
The points representing the complex number z for which |z + 1| < |z − 1| lies in the interior of a circle.
What is the value of `(i^(4n + 1) -i^(4n - 1))/2`?
What is the locus of z, if amplitude of z – 2 – 3i is `pi/4`?
If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.
The number `(1 - i)^3/(1 - i^2)` is equal to ______.
Find `|(1 + i) ((2 + i))/((3 + i))|`.
If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
If a complex number z satisfies the equation `z + sqrt(2)|z + 1| + i` = 0, then |z| is equal to ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Find the value of `(i^592+i^590+i^588+i^586+i^584)/(i^582+i^580+i^578+i^576+i^574)`
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Show that `(-1 + sqrt3 i)^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`