Advertisements
Advertisements
प्रश्न
Find the value of 1 + i2 + i4 + i6 + i8 + ... + i20
उत्तर
1 + i2 + i4 + i6 + i8 + ... + i20
= 1 + (i2 + i4) + (i6 + i8) + (i10 + i12) + (i14 + i16) + (i18 + i20)
= 1 + [i2 + (i2)2] + [(i2)3 + (i2)4] + [(i2)5 + (i2)6] + [(i2)7 + (i2)8] + [(i2)9 + (i2)10]
= 1 + [–1 + (– 1)2] + [(– 1)3 + (–1)4] + [(– 1)5 + (– 1)6] + [(– 1)7 + (– 1)8] + [(– 1)9 + (– 1)10] ...[∵ i2 = –1]
= 1 + (– 1 + 1) + (– 1 + 1) + (– 1 + 1) + (– 1 + 1) + (– 1 + 1)
= 1 + 0 + 0 + 0 + 0 + 0
= 1
APPEARS IN
संबंधित प्रश्न
Find the multiplicative inverse of the complex number.
`sqrt5 + 3i`
If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.
Show that 1 + i10 + i20 + i30 is a real number.
Find the value of i + i2 + i3 + i4
Simplify the following and express in the form a + ib:
(2i3)2
Simplify the following and express in the form a + ib:
(1 + 3i)2 (3 + i)
Simplify the following and express in the form a + ib:
`(1 + 2/"i")(3 + 4/"i")(5 + "i")^-1`
Write the conjugates of the following complex number:
3 + i
Write the conjugates of the following complex number:
cosθ + i sinθ
Simplify : `("i"^592 + "i"^590 + "i"^588 + "i"^586 + "i"^584)/("i"^582 + "i"^580 + "i"^578 + "i"^576 + "i"^574)`
Show that `((sqrt(7) + "i"sqrt(3))/(sqrt(7) - "i"sqrt(3)) + (sqrt(7) - "i"sqrt(3))/(sqrt(7) + "i"sqrt(3)))` is real
Find the value of x and y which satisfy the following equation (x, y∈R).
(x + 2y) + (2x − 3y)i + 4i = 5
Find the value of x and y which satisfy the following equation (x, y∈R).
`(x+ 1)/(1 + "i") + (y - 1)/(1 - "i")` = i
Answer the following:
Solve the following equation for x, y ∈ R:
`(x + "i"y)/(2 + 3"i")` = 7 – i
Answer the following:
Solve the following equations for x, y ∈ R:
(x + iy) (5 + 6i) = 2 + 3i
Answer the following:
Show that `(1/sqrt(2) + "i"/sqrt(2))^10 + (1/sqrt(2) - "i"/sqrt(2))^10` = 0
If z ≠ 1 and `"z"^2/("z - 1")` is real, then the point represented by the complex number z lies ______.
Evaluate: (1 + i)6 + (1 – i)3
The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.
If (2 + i) (2 + 2i) (2 + 3i) ... (2 + ni) = x + iy, then 5.8.13 ... (4 + n2) = ______.
State true or false for the following:
If three complex numbers z1, z2 and z3 are in A.P., then they lie on a circle in the complex plane.
The area of the triangle on the complex plane formed by the complex numbers z, –iz and z + iz is ______.
Evaluate `sum_(n = 1)^13 (i^n + i^(n + 1))`, where n ∈ N.
If `((1 + i)/(1 - i))^3 - ((1 - i)/(1 + i))^3` = x + iy, then find (x, y).
If (1 + i)z = `(1 - i)barz`, then show that z = `-ibarz`.
If z = x + iy, then show that `z barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.
Solve the equation |z| = z + 1 + 2i.
If |z + 1| = z + 2(1 + i), then find z.
If |z1| = 1(z1 ≠ –1) and z2 = `(z_1 - 1)/(z_1 + 1)`, then show that the real part of z2 is zero.
If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.
Multiplicative inverse of 1 + i is ______.
Where does z lie, if `|(z - 5i)/(z + 5i)|` = 1.
The point represented by the complex number 2 – i is rotated about origin through an angle `pi/2` in the clockwise direction, the new position of point is ______.
Let x, y ∈ R, then x + iy is a non-real complex number if ______.
The smallest positive integer n for which `((1 + i)/(1 - i))^n` = –1 is ______.
If α, β, γ and a, b, c are complex numbers such that `α/a + β/b + γ/c` = 1 + i and `a/α + b/β + c/γ` = 0, then the value of `α^2/a^2 + β^2/b^2 + γ^2/c^2` is equal to ______.
Simplify the following and express in the form a+ib.
`(3"i"^5 + 2"i"^7 + "i"^9)/("i"^6 + 2"i"^8 + 3"i"^18)`
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`