मराठी

If (1+i1-i)m = 1, then find the least positive integral value of m. - Mathematics

Advertisements
Advertisements

प्रश्न

If `((1+i)/(1-i))^m` = 1, then find the least positive integral value of m.

बेरीज

उत्तर

`((1+i)/(1-i))^m` =   1, 

⇒ `((1+i)/(1-i) xx (1 + i)/(1 + i))^m` =   1, 

⇒ `((1+ i)^2/(1^2 + 1^2))^m  = 1`

⇒ `((1^2  + i^2  + 2i)/2)^2  = 1`

⇒ `((1 - 1 + 2i)/2)^2 = 1`

⇒ `((2i)/2)^m  = 1`

⇒ `i^m  = 1`

∴ m = 4k, where k is an integral

Therefore, the smallest positive integral is 1

Therefore, the least positive integral value of m is 4 (4 x 1).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Complex Numbers and Quadratic Equations - Miscellaneous Exercise [पृष्ठ ११३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 5 Complex Numbers and Quadratic Equations
Miscellaneous Exercise | Q 20 | पृष्ठ ११३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the multiplicative inverse of the complex number:

4 – 3i


If `x – iy = sqrt((a-ib)/(c - id))` prove that `(x^2 + y^2) = (a^2 + b^2)/(c^2 + d^2)`


Find the number of non-zero integral solutions of the equation `|1-i|^x  = 2^x`.


Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Write the conjugates of the following complex number:

3 – i


Find the value of i49 + i68 + i89 + i110 


Find the value of `("i"^6 + "i"^7 + "i"^8 + "i"^9)/("i"^2 + "i"^3)`


If (x + iy)3 = y + vi then show that `(y/x + "v"/y)` = 4(x2 – y2)


Find the value of x and y which satisfy the following equation (x, y∈R).

If x(1 + 3i) + y(2 − i) − 5 + i3 = 0, find x + y


Answer the following:

Simplify the following and express in the form a + ib:

`3 + sqrt(-64)`


Answer the following:

Simplify the following and express in the form a + ib:

(2 + 3i)(1 − 4i)


Answer the following:

Simplify the following and express in the form a + ib:

`5/2"i"(-4 - 3"i")`


Answer the following:

Simplify the following and express in the form a + ib:

`(5 + 7"i")/(4 + 3"i") + (5 + 7"i")/(4 - 3"i")`


Answer the following:

Solve the following equations for x, y ∈ R:

(x + iy) (5 + 6i) = 2 + 3i


Solve the following equation for x, y ∈ R:

2x + i9y (2 + i) = xi7 + 10i16


Answer the following:

show that `((1 + "i")/sqrt(2))^8 + ((1 - "i")/sqrt(2))^8` = 2


Answer the following:

Show that z = `((-1 + sqrt(-3))/2)^3` is a rational number


Answer the following:

Simplify: `("i"^65 + 1/"i"^145)`


If z1 = 2 – 4i and z2 = 1 + 2i, then `bar"z"_1 + bar"z"_2` = ______.


Find the value of 2x4 + 5x3 + 7x2 – x + 41, when x = `-2 - sqrt(3)"i"`.


The real value of ‘a’ for which 3i3 – 2ai2 + (1 – a)i + 5 is real is ______.


The value of `(- sqrt(-1))^(4"n" - 3)`, where n ∈ N, is ______.


State true or false for the following:

The complex number cosθ + isinθ can be zero for some θ.


What is the reciprocal of `3 + sqrt(7)i`.


The equation |z + 1 – i| = |z – 1 + i| represents a ______.


For a positive integer n, find the value of `(1 - i)^n (1 - 1/i)^"n"`


If z = x + iy, then show that `z  barz + 2(z + barz) + b` = 0, where b ∈ R, represents a circle.


If `(z - 1)/(z + 1)` is purely imaginary number (z ≠ – 1), then find the value of |z|.


If |z1| = |z2| = ... = |zn| = 1, then show that |z1 + z2 + z3 + ... + zn| = `|1/z_1 + 1/z_2 + 1/z_3 + ... + 1/z_n|`.


Find the complex number satisfying the equation `z + sqrt(2) |(z + 1)| + i` = 0.


If z1 and z2 are complex numbers such that z1 + z2 is a real number, then z2 = ______.


Let x, y ∈ R, then x + iy is a non-real complex number if ______.


If z is a complex number, then ______.


If z1, z2, z3 are complex numbers such that |z1| = |z2| = |z3| = `|1/z_1 + 1/z_2 + 1/z_3|` = 1, then |z1 + z2 + z3| is ______.


If `(x + iy)^(1/5)` = a + ib, and u = `x/a - y/b`, then ______.


If α, β, γ and a, b, c are complex numbers such that `α/a +  β/b + γ/c` = 1 + i and `a/α +  b/β + c/γ` = 0, then the value of `α^2/a^2 +  β^2/b^2 + γ^2/c^2` is equal to ______.


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a + ib.

`(3i^5 + 2i^7 + i^9) / (i^6 + 2i^8 + 3i^18)`


Simplify the following and express in the form a+ib.

`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×